使用backtesting.py获取策略资金曲线和权益变化的完整方法
2025-06-03 04:47:33作者:明树来
在量化交易策略回测过程中,了解策略资金曲线和权益随时间的变化情况至关重要。本文将详细介绍如何使用backtesting.py库获取这些关键数据。
为什么需要资金曲线数据
资金曲线和权益变化数据能够直观展示策略的表现,包括:
- 策略的盈利能力
- 资金曲线的平滑度
- 最大回撤发生的时间和程度
- 资金使用效率
标准回测输出
backtesting.py的标准回测输出stats主要包含汇总统计信息,如:
- 总收益率
- 夏普比率
- 最大回撤
- 交易次数等
但这些汇总数据无法展示策略在整个回测期间的表现演变过程。
获取完整资金曲线的方法
通过扩展Strategy类,我们可以记录每个时间点的权益数据:
class EquityTrackingStrategy(Strategy):
equity_history = pd.DataFrame()
def next(self):
# 记录当前日期和权益值
self.equity_history.loc[len(self.data), 'Date'] = self.data.index[-1]
self.equity_history.loc[len(self.data), 'Equity'] = self.equity
使用这个策略进行回测后,可以通过以下方式获取完整资金曲线:
bt = Backtest(data, EquityTrackingStrategy, cash=10_000)
stats = bt.run()
equity_df = bt._strategy.equity_history
技术要点解析
-
self.equity属性:这是Strategy类内置的属性,表示当前账户的权益值(现金+持仓价值)
-
数据记录时机:在
next()方法中记录数据,确保每个时间点都被覆盖 -
索引处理:使用
len(self.data)作为索引确保数据顺序正确
进阶应用
-
多维度记录:除了权益,还可以记录其他关键指标
self.equity_history.loc[len(self.data), 'Balance'] = self.balance self.equity_history.loc[len(self.data), 'Position'] = self.position.size -
性能优化:对于大规模回测,可以考虑使用更高效的数据结构
-
可视化:将获取的数据用于绘制资金曲线图
注意事项
- 确保日期列被正确转换为datetime类型
- 考虑交易成本对权益计算的影响
- 对于高频策略,注意数据记录可能带来的性能影响
通过这种方法,交易者可以全面了解策略在整个回测期间的表现细节,为策略优化提供数据支持。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementPersist and reuse KV Cache to speedup your LLM.Python02
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 STM32到GD32项目移植完全指南:从兼容性到实战技巧 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
283
2.59 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
225
303
暂无简介
Dart
572
127
Ascend Extension for PyTorch
Python
109
139
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
602
171
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.04 K
608
仓颉编译器源码及 cjdb 调试工具。
C++
120
179
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205