使用backtesting.py获取策略资金曲线和权益变化的完整方法
2025-06-03 12:51:03作者:明树来
在量化交易策略回测过程中,了解策略资金曲线和权益随时间的变化情况至关重要。本文将详细介绍如何使用backtesting.py库获取这些关键数据。
为什么需要资金曲线数据
资金曲线和权益变化数据能够直观展示策略的表现,包括:
- 策略的盈利能力
- 资金曲线的平滑度
- 最大回撤发生的时间和程度
- 资金使用效率
标准回测输出
backtesting.py的标准回测输出stats主要包含汇总统计信息,如:
- 总收益率
- 夏普比率
- 最大回撤
- 交易次数等
但这些汇总数据无法展示策略在整个回测期间的表现演变过程。
获取完整资金曲线的方法
通过扩展Strategy类,我们可以记录每个时间点的权益数据:
class EquityTrackingStrategy(Strategy):
equity_history = pd.DataFrame()
def next(self):
# 记录当前日期和权益值
self.equity_history.loc[len(self.data), 'Date'] = self.data.index[-1]
self.equity_history.loc[len(self.data), 'Equity'] = self.equity
使用这个策略进行回测后,可以通过以下方式获取完整资金曲线:
bt = Backtest(data, EquityTrackingStrategy, cash=10_000)
stats = bt.run()
equity_df = bt._strategy.equity_history
技术要点解析
-
self.equity属性:这是Strategy类内置的属性,表示当前账户的权益值(现金+持仓价值)
-
数据记录时机:在
next()方法中记录数据,确保每个时间点都被覆盖 -
索引处理:使用
len(self.data)作为索引确保数据顺序正确
进阶应用
-
多维度记录:除了权益,还可以记录其他关键指标
self.equity_history.loc[len(self.data), 'Balance'] = self.balance self.equity_history.loc[len(self.data), 'Position'] = self.position.size -
性能优化:对于大规模回测,可以考虑使用更高效的数据结构
-
可视化:将获取的数据用于绘制资金曲线图
注意事项
- 确保日期列被正确转换为datetime类型
- 考虑交易成本对权益计算的影响
- 对于高频策略,注意数据记录可能带来的性能影响
通过这种方法,交易者可以全面了解策略在整个回测期间的表现细节,为策略优化提供数据支持。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
241
277
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
695
367
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
882