JupyterLab LSP 扩展使用指南
2024-09-20 19:04:49作者:幸俭卉
1. 项目介绍
JupyterLab LSP 是一个为 JupyterLab 提供代码辅助功能的扩展,它利用 Language Server Protocol(语言服务器协议)来实现代码导航、悬停提示、代码检查(linters)、自动补全和重命名等功能。这个扩展支持多种编程语言,包括 Python、R、Bash、TypeScript 等,极大地提升了在 JupyterLab 中编写代码的效率和体验。
2. 项目快速启动
安装步骤
- 
安装 Python 3
conda install -c conda-forge python=3 - 
安装 JupyterLab 和扩展
conda install -c conda-forge 'jupyterlab>=4.1.0,<5.0.0a0' jupyterlab-lsp或者使用 pip 安装:
pip install 'jupyterlab>=4.1.0,<5.0.0a0' jupyterlab-lsp - 
安装语言服务器 例如,安装 Python 和 R 的语言服务器:
pip install 'python-lsp-server[all]' R -e 'install.packages("languageserver")' - 
重启 JupyterLab 安装完成后,重启 JupyterLab 以使扩展生效。
 
配置语言服务器
在 JupyterLab 中,可以通过 Settings > Advanced Settings Editor 来配置语言服务器。例如,配置 Python 的 pylsp 服务器:
{
  "language_servers": {
    "pylsp": {
      "serverSettings": {
        "pylsp.plugins.pydocstyle.enabled": true,
        "pylsp.plugins.pyflakes.enabled": false,
        "pylsp.plugins.flake8.enabled": true
      }
    }
  }
}
3. 应用案例和最佳实践
应用案例
- 数据科学项目:在 JupyterLab 中进行数据分析和机器学习模型开发时,使用 LSP 扩展可以提供实时的代码检查和自动补全,帮助开发者快速定位和修复代码中的错误。
 - 软件开发:在开发大型软件项目时,LSP 扩展可以提供代码导航和重命名功能,帮助开发者更好地管理和维护代码库。
 
最佳实践
- 配置优化:根据项目需求,合理配置语言服务器,例如启用或禁用特定的代码检查插件,以提高开发效率。
 - 性能优化:对于大型项目,可以通过调整 LSP 服务器的配置来优化性能,例如减少不必要的代码检查或调整自动补全的触发条件。
 
4. 典型生态项目
- JupyterLab:JupyterLab 是一个基于 Web 的交互式开发环境,支持多种编程语言和数据科学工具。
 - Jupyter Notebook:Jupyter Notebook 是 JupyterLab 的前身,提供了基于单元格的交互式编程环境。
 - JupyterHub:JupyterHub 是一个多用户版本的 Jupyter Notebook 服务器,适用于团队协作和教学环境。
 
通过结合这些生态项目,JupyterLab LSP 扩展可以为开发者提供一个完整的、高效的开发环境。
登录后查看全文 
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
272
2.56 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
103
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
597
157
暂无简介
Dart
564
125
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
231
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
606
仓颉编译器源码及 cjdb 调试工具。
C++
118
95
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
444