Shiki代码高亮库中按需加载语言解析器的优化实践
2025-05-20 05:52:56作者:盛欣凯Ernestine
在Web开发中,代码高亮是提升用户体验的重要功能之一。Shiki作为一款基于TextMate语法的代码高亮库,因其精准的语法高亮效果而广受欢迎。然而,在实际使用过程中,开发者可能会遇到一个性能优化问题:如何实现语言解析器的按需加载。
问题背景
Shiki默认的工作机制是在初始化时同步加载所有配置的语言解析器(lexers)。这种设计虽然保证了高亮操作的同步执行(这对某些集成场景很重要),但也带来了明显的性能开销。当项目中只需要高亮少数几种语言时,加载全部语言解析器会造成不必要的资源浪费,影响页面加载速度。
核心问题分析
通过实际案例观察,即使只指定使用TypeScript语言进行高亮,Shiki仍然会加载所有配置的语言解析器模块。这主要表现在:
- 网络请求中出现了所有语言模块的JS文件加载
- 内存中保留了未使用语言解析器的资源
- 增加了初始化的时间和资源消耗
解决方案
针对这一问题,Shiki核心团队成员提出了异步加载的解决方案。这种方案特别适合那些可以接受异步操作的集成环境:
- 延迟加载机制:首先检查当前是否已加载目标语言
- 动态导入:当语言未加载时,异步导入对应的语言模块
- 按需注册:将导入的语言模块注册到高亮器实例中
实现示例
以下是经过优化的实现代码,展示了如何实现TypeScript语言的按需加载:
// 检查是否已加载目标语言
if (!highlighter.getLoadedLanguages().includes('typescript')) {
// 动态导入语言模块
const tsModule = await import('shiki/langs/typescript.mjs');
// 注册语言
await highlighter.loadLanguage(tsModule);
}
// 执行高亮操作
const html = highlighter.codeToHtml(code, { lang: 'ts' });
对于更复杂的场景,可以结合Shiki提供的bundledLanguages信息,构建一个通用的语言加载器:
async function loadLanguageOnDemand(lang: string) {
const { bundledLanguages } = await import('shiki/langs');
const importFn = (bundledLanguages as any)[lang];
if (!importFn) return;
if (!highlighter.getLoadedLanguages().includes(lang)) {
await highlighter.loadLanguage(await importFn());
}
}
最佳实践建议
- 评估需求:如果项目确定只需要少量固定语言,可以直接配置这些语言
- 异步优化:对于动态语言需求的场景,采用上述按需加载方案
- 错误处理:添加适当的错误处理,应对语言模块加载失败的情况
- 缓存策略:考虑对已加载的语言进行缓存,避免重复加载
总结
通过理解Shiki的工作原理和采用适当的优化策略,开发者可以显著减少不必要的资源加载,提升应用性能。这种按需加载的模式特别适合语言需求不确定或动态变化的场景,为开发者提供了灵活性和性能之间的良好平衡。
对于追求极致性能的项目,还可以考虑结合预加载策略或Web Worker等技术,进一步优化代码高亮的用户体验。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.88 K
暂无简介
Dart
671
156
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
260
322
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
311
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
654
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1