互动式美式手语学习工具:利用计算机视觉提升聋哑社区的沟通能力
2024-09-16 17:32:30作者:郜逊炳
项目介绍
Interactive ABC's with American Sign Language 是一个利用计算机视觉技术,特别是Yolov5模型,来识别美式手语字母的项目。该项目旨在通过技术手段,提升聋哑社区的沟通便利性,并为教育资源提供新的可能性。通过社交媒体平台的数据收集和自定义数据集的创建,项目在短短两周内收集了721张图片,并经过预处理和数据增强,最终生成了18,000张用于模型训练的图片。经过300个epoch的训练,模型在识别美式手语字母方面取得了0.8527的平均精度分数,显示出其在实际应用中的潜力。
项目技术分析
该项目主要依赖于Yolov5模型进行手语字母的识别。Yolov5是一种实时目标检测模型,具有速度快、轻量级且精度高的特点。模型通过卷积神经网络提取图像特征,并使用特征金字塔进行对象缩放的泛化,最终通过模型头部的锚框生成包含类别概率、对象得分和边界框的输出向量。项目采用了迁移学习的方法,使用预训练的Yolov5m权重进行训练,并在本地Linux机器上使用CUDA/cudNN和Pytorch进行所有操作。
项目及技术应用场景
该项目和技术可以广泛应用于聋哑社区的沟通辅助工具、教育资源开发以及公共服务的无障碍化。例如,在餐厅点餐、银行咨询、医院就诊等场景中,通过实时识别手语字母,可以大大提升聋哑人士的沟通效率和体验。此外,该项目还可以作为教育工具,帮助聋哑儿童学习手语,促进他们的语言发展和社交能力。
项目特点
- 数据集的多样性和自定义性:通过社交媒体平台收集数据,确保数据集的多样性和代表性,同时避免了现有数据集分辨率低和缺少动态字母的问题。
- 数据增强技术的应用:通过Albumentations库进行数据增强,生成25倍于原始数据集的图片,有效提升了模型的泛化能力。
- 高精度的模型表现:经过300个epoch的训练,模型在识别静态和动态手语字母方面均表现出色,平均精度分数达到0.8527。
- 实际应用的潜力:通过视频测试,模型在不同环境和距离下的表现显示出其在实际应用中的潜力,特别是在儿童手语识别和多人同时识别方面。
通过这个项目,我们看到了计算机视觉技术在提升聋哑社区沟通能力和教育资源方面的巨大潜力。未来,随着更多数据的收集和模型的优化,该项目有望在更广泛的场景中得到应用,为聋哑社区带来更多便利和机会。
热门项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
830
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
376
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5