互动式美式手语学习工具:利用计算机视觉提升聋哑社区的沟通能力
2024-09-16 04:22:36作者:郜逊炳
项目介绍
Interactive ABC's with American Sign Language 是一个利用计算机视觉技术,特别是Yolov5模型,来识别美式手语字母的项目。该项目旨在通过技术手段,提升聋哑社区的沟通便利性,并为教育资源提供新的可能性。通过社交媒体平台的数据收集和自定义数据集的创建,项目在短短两周内收集了721张图片,并经过预处理和数据增强,最终生成了18,000张用于模型训练的图片。经过300个epoch的训练,模型在识别美式手语字母方面取得了0.8527的平均精度分数,显示出其在实际应用中的潜力。
项目技术分析
该项目主要依赖于Yolov5模型进行手语字母的识别。Yolov5是一种实时目标检测模型,具有速度快、轻量级且精度高的特点。模型通过卷积神经网络提取图像特征,并使用特征金字塔进行对象缩放的泛化,最终通过模型头部的锚框生成包含类别概率、对象得分和边界框的输出向量。项目采用了迁移学习的方法,使用预训练的Yolov5m权重进行训练,并在本地Linux机器上使用CUDA/cudNN和Pytorch进行所有操作。
项目及技术应用场景
该项目和技术可以广泛应用于聋哑社区的沟通辅助工具、教育资源开发以及公共服务的无障碍化。例如,在餐厅点餐、银行咨询、医院就诊等场景中,通过实时识别手语字母,可以大大提升聋哑人士的沟通效率和体验。此外,该项目还可以作为教育工具,帮助聋哑儿童学习手语,促进他们的语言发展和社交能力。
项目特点
- 数据集的多样性和自定义性:通过社交媒体平台收集数据,确保数据集的多样性和代表性,同时避免了现有数据集分辨率低和缺少动态字母的问题。
- 数据增强技术的应用:通过Albumentations库进行数据增强,生成25倍于原始数据集的图片,有效提升了模型的泛化能力。
- 高精度的模型表现:经过300个epoch的训练,模型在识别静态和动态手语字母方面均表现出色,平均精度分数达到0.8527。
- 实际应用的潜力:通过视频测试,模型在不同环境和距离下的表现显示出其在实际应用中的潜力,特别是在儿童手语识别和多人同时识别方面。
通过这个项目,我们看到了计算机视觉技术在提升聋哑社区沟通能力和教育资源方面的巨大潜力。未来,随着更多数据的收集和模型的优化,该项目有望在更广泛的场景中得到应用,为聋哑社区带来更多便利和机会。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 PANTONE潘通AI色板库:设计师必备的色彩管理利器 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
407
3.14 K
Ascend Extension for PyTorch
Python
226
252
暂无简介
Dart
673
160
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
664
319
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
658
React Native鸿蒙化仓库
JavaScript
262
326
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
220
仓颉编译器源码及 cjdb 调试工具。
C++
135
868