Apache Kyuubi 与 Spark 4.0 兼容性改造实践
Apache Kyuubi 作为企业级数据湖分析平台,其与 Spark 引擎的兼容性一直是社区关注的重点。近期,随着 Spark 4.0 预览版的临近,Kyuubi 社区针对 Spark 主分支的兼容性问题进行了系统性的改造工作。本文将深入剖析这一技术挑战的解决过程。
问题背景
Kyuubi 项目通过每日构建(Daily Build)机制持续验证与 Spark 主分支的兼容性。在近期测试中,发现了两个关键问题:
-
Jakarta Servlet API 兼容性问题:Spark 4.0 将 Web 相关组件从传统的 javax.servlet 迁移到了 jakarta.servlet 命名空间,导致 Kyuubi 中依赖 javax.servlet 的代码无法编译。
-
ANTLR 版本冲突:Spark 4.0 升级了 ANTLR 版本至 4.13.1,而 Kyuubi 仍使用 4.9.3 版本,产生了运行时版本不匹配问题。
技术挑战分析
兼容性改造面临的核心挑战在于:
-
双向兼容需求:Kyuubi 需要同时支持新旧版本的 Spark,不能简单地通过升级依赖解决问题。
-
Web 组件深度耦合:Kyuubi 的 WebUI 模块直接使用了 Spark 提供的 WebUIPage、UIUtils 等类,这些类内部又依赖 Servlet API,形成了复杂的依赖链。
-
API 不兼容:javax 和 jakarta 命名空间下的类虽然功能相似,但属于完全不同的类路径,无法通过简单的类型转换解决。
解决方案
社区采用了分层解决的策略:
1. 依赖版本统一
对于 ANTLR 这类纯技术组件,采用版本对齐策略:
<profile>
<id>spark-master</id>
<properties>
<antlr4.version>4.13.1</antlr4.version>
<jakarta.servlet-api.version>5.0.0</jakarta.servlet-api.version>
</properties>
</profile>
2. 适配层设计
针对 Servlet API 的命名空间变更,创新性地引入了 Shim(垫片)适配层模式:
public class ServletShim {
public static HttpServletRequest wrap(Object request) {
if (request instanceof jakarta.servlet.http.HttpServletRequest) {
return new JakartaRequestWrapper((jakarta.servlet.http.HttpServletRequest) request);
} else {
return (javax.servlet.http.HttpServletRequest) request;
}
}
private static class JakartaRequestWrapper implements HttpServletRequest {
private final jakarta.servlet.http.HttpServletRequest delegate;
// 实现所有接口方法,委托给delegate
}
}
这种设计实现了:
- 编译时统一接口
- 运行时动态适配
- 新旧版本无缝切换
3. 模块化改造
将受影响的组件划分为:
- 核心引擎模块:保持最小依赖
- WebUI 扩展模块:实现版本适配
- 插件模块:按需加载适配器
实施效果
经过系列改造后:
- 每日构建恢复绿色状态
- 支持 Spark 3.x 和 4.0 双版本
- 为后续大版本升级奠定基础
经验总结
- 前瞻性测试:每日构建机制能及早发现兼容性问题
- 解耦设计:核心模块应尽量减少对特定实现的依赖
- 适配器模式:是解决版本差异的有效手段
- 渐进式升级:通过条件编译和动态加载平滑过渡
这次改造不仅解决了具体的技术问题,更为 Kyuubi 社区积累了处理重大版本升级的宝贵经验,展现了开源社区协同解决复杂技术挑战的能力。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00