Apache Kyuubi 与 Spark 4.0 兼容性改造实践
Apache Kyuubi 作为企业级数据湖分析平台,其与 Spark 引擎的兼容性一直是社区关注的重点。近期,随着 Spark 4.0 预览版的临近,Kyuubi 社区针对 Spark 主分支的兼容性问题进行了系统性的改造工作。本文将深入剖析这一技术挑战的解决过程。
问题背景
Kyuubi 项目通过每日构建(Daily Build)机制持续验证与 Spark 主分支的兼容性。在近期测试中,发现了两个关键问题:
-
Jakarta Servlet API 兼容性问题:Spark 4.0 将 Web 相关组件从传统的 javax.servlet 迁移到了 jakarta.servlet 命名空间,导致 Kyuubi 中依赖 javax.servlet 的代码无法编译。
-
ANTLR 版本冲突:Spark 4.0 升级了 ANTLR 版本至 4.13.1,而 Kyuubi 仍使用 4.9.3 版本,产生了运行时版本不匹配问题。
技术挑战分析
兼容性改造面临的核心挑战在于:
-
双向兼容需求:Kyuubi 需要同时支持新旧版本的 Spark,不能简单地通过升级依赖解决问题。
-
Web 组件深度耦合:Kyuubi 的 WebUI 模块直接使用了 Spark 提供的 WebUIPage、UIUtils 等类,这些类内部又依赖 Servlet API,形成了复杂的依赖链。
-
API 不兼容:javax 和 jakarta 命名空间下的类虽然功能相似,但属于完全不同的类路径,无法通过简单的类型转换解决。
解决方案
社区采用了分层解决的策略:
1. 依赖版本统一
对于 ANTLR 这类纯技术组件,采用版本对齐策略:
<profile>
<id>spark-master</id>
<properties>
<antlr4.version>4.13.1</antlr4.version>
<jakarta.servlet-api.version>5.0.0</jakarta.servlet-api.version>
</properties>
</profile>
2. 适配层设计
针对 Servlet API 的命名空间变更,创新性地引入了 Shim(垫片)适配层模式:
public class ServletShim {
public static HttpServletRequest wrap(Object request) {
if (request instanceof jakarta.servlet.http.HttpServletRequest) {
return new JakartaRequestWrapper((jakarta.servlet.http.HttpServletRequest) request);
} else {
return (javax.servlet.http.HttpServletRequest) request;
}
}
private static class JakartaRequestWrapper implements HttpServletRequest {
private final jakarta.servlet.http.HttpServletRequest delegate;
// 实现所有接口方法,委托给delegate
}
}
这种设计实现了:
- 编译时统一接口
- 运行时动态适配
- 新旧版本无缝切换
3. 模块化改造
将受影响的组件划分为:
- 核心引擎模块:保持最小依赖
- WebUI 扩展模块:实现版本适配
- 插件模块:按需加载适配器
实施效果
经过系列改造后:
- 每日构建恢复绿色状态
- 支持 Spark 3.x 和 4.0 双版本
- 为后续大版本升级奠定基础
经验总结
- 前瞻性测试:每日构建机制能及早发现兼容性问题
- 解耦设计:核心模块应尽量减少对特定实现的依赖
- 适配器模式:是解决版本差异的有效手段
- 渐进式升级:通过条件编译和动态加载平滑过渡
这次改造不仅解决了具体的技术问题,更为 Kyuubi 社区积累了处理重大版本升级的宝贵经验,展现了开源社区协同解决复杂技术挑战的能力。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00