VLMEvalKit评测LLaVA模型在MMMU数据集上的性能分析
2025-07-03 07:42:29作者:董斯意
背景介绍
VLMEvalKit是一个用于评估视觉语言模型性能的开源工具包。最近,有开发者在评估LLaVA-v1.5-7B模型在MMMU_DEV_VAL测试集上的表现时,发现评测结果与官方公布的数据存在较大差异。本文将详细分析这一现象的原因,并提供解决方案。
问题现象
开发者在使用VLMEvalKit对LLaVA-v1.5-7B模型进行评测时,观察到以下异常现象:
- 总体准确率仅为0.67%(dev集)和1.44%(validation集)
- 多个学科领域的准确率为0%
- 与官方公布的性能指标存在显著差距
评测环境配置如下:
- CUDA 11.7
- PyTorch 1.13.1
- NVIDIA A100 GPU
- Python 3.10.13
原因分析
经过技术团队调查,发现该问题主要由以下因素导致:
- 缓存数据干扰:之前的评测结果可能被缓存,影响了新的评测
- API密钥配置:虽然MMMU评测不需要OPENAI_API_KEY,但错误的配置可能导致评测流程异常
- 代码版本问题:早期版本的VLMEvalKit可能存在评测逻辑缺陷
解决方案
针对上述问题,建议采取以下解决步骤:
- 清理缓存数据:删除之前的评测结果文件
- 更新代码库:拉取VLMEvalKit最新版本代码
- 重新评测:在不配置OPENAI_API_KEY的情况下重新运行评测
验证结果
按照上述方案操作后,评测结果恢复正常,与官方公布数据一致。这表明:
- VLMEvalKit评测框架本身是可靠的
- 正确的使用方法和环境配置对评测结果至关重要
- 缓存管理是机器学习评测中需要特别注意的环节
最佳实践建议
基于此次经验,我们总结出以下VLMEvalKit使用建议:
- 定期更新代码:保持评测工具处于最新版本
- 管理评测缓存:每次重要评测前清理历史结果
- 检查环境配置:确认所有依赖项版本兼容
- 分步验证:可以先在小数据集上验证评测流程
技术启示
这一案例展示了机器学习评测中的几个重要方面:
- 可重复性:评测结果应该在不同环境下保持一致
- 环境隔离:评测环境需要干净、可控
- 工具成熟度:开源评测工具需要持续维护和更新
通过正确处理这些问题,开发者可以确保获得准确可靠的模型性能评估结果,为后续的模型优化和改进提供坚实基础。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 Python开发者的macOS终极指南:VSCode安装配置全攻略 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Jetson TX2开发板官方资源完全指南:从入门到精通
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
暂无简介
Dart
671
155
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
Ascend Extension for PyTorch
Python
220
236
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.83 K
React Native鸿蒙化仓库
JavaScript
259
322