**A Normalized Gaussian Wasserstein Distance for Tiny Object Detection(NWD)安装配置指南**
2026-01-21 04:22:36作者:申梦珏Efrain
项目基础介绍
NWD是基于PyTorch实现的一个开源项目,旨在提供一种名为“规范化高斯Wasserstein距离”的方法,专门用于微型物体检测。该技术被发表在《ISPRS Journal of Photogrammetry and Remote Sensing》上,适用于处理空中图像中的微小目标。项目采用Python为主要编程语言,并依赖于一系列库如PyTorch、mmcv等来支持其功能。
关键技术与框架
- PyTorch: 深度学习框架,负责模型的构建与训练。
- MMCV: 一个面向计算机视觉任务的扩展库,特别是为MMDetection设计。
- MMDetection: 高度可扩展的对象检测库,提供了多种检测算法的支持。
- COCOAPI-AITOD: 专门为AI-TOD数据集的评估而定制的COCO API版本。
- Normalized Gaussian Wasserstein Distance (NWD): 核心算法,优化了对小型目标的检测性能。
安装与配置指南
环境准备
- 系统要求:建议使用Ubuntu 16.04或更高版本。
- 软件需求:
- Python 3.7+
- PyTorch 1.5及以上(推荐含CUDA 10.1版本)
- CUDA 10.1
- cuDNN与NCCL 2相应版本
- gcc/g++ 5.4 或更高
安装步骤
Step 1: 创建并激活虚拟环境
打开终端,执行以下命令以创建一个新的conda虚拟环境:
conda create -n nwd python=3.7 -y
conda activate nwd
Step 2: 安装PyTorch与 torchvision
确保安装对应CUDA版本的PyTorch和torchvision:
pip install torch==1.5.0+cu101 torchvision==0.6.0+cu101 -f https://download.pytorch.org/whl/torch_stable.html
Step 3: 安装MMCV-NWD
从GitHub克隆并安装特定版本的mmcv-nwd:
git clone https://github.com/jwwangchn/mmcv-nwd.git
cd mmcv-nwd
MMCV_WITH_OPS=1 pip install -e .
cd ..
Step 4: 安装COCOAPI-AITOD
用于AI-TOD数据集的评估:
pip install "git+https://github.com/jwwangchn/cocoapi-aitod.git#subdirectory=aitodpycocotools"
Step 5: 获取NWD项目源码
git clone https://github.com/jwwangchn/NWD.git
cd NWD
Step 6: 安装依赖与项目设置
首先安装项目所需的其他库,然后进行本地开发环境的搭建:
pip install -r requirements.txt
python setup.py develop
数据集准备
参照AI-TOD的指示下载并准备AI-TOD数据集,并将其根目录链接到$NWD/data/AI-TOD中。
开始您的实验
-
查阅配置文件夹
configs/nwd下的相关配置,这些是针对不同模型与任务的预设配置。 -
单GPU训练示例:
python tools/train.py configs/nwd/faster_rcnn_r50_aitod_rpn_nwd.py -
多GPU分布式训练:
sh tools/dist_train.sh configs/nwd/faster_rcnn_r50_aitod_rpn_nwd.py 4
遵循以上步骤后,您便成功配置并可以开始利用NWD进行微型物体检测的研究和实验了。记得根据具体情况进行适当路径调整和配置修改。祝您的研究顺利!
通过上述详细步骤,即便是初学者也能顺利完成项目的搭建和运行准备工作。如果在安装过程中遇到任何问题,查阅项目GitHub页面上的文档或提交issue获取帮助是很好的解决方式。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
533
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
341
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178