FlagEmbedding项目微调模型的使用指南
2025-05-24 04:12:58作者:蔡怀权
微调结果文件结构解析
在FlagEmbedding项目中完成模型微调后,会生成一个包含多个文件的目录结构。典型的微调结果目录包含以下重要文件:
- 模型配置文件:config.json文件包含了模型的基本配置信息
- 模型权重文件:model.safetensors存储了模型的主要权重参数
- 分词器相关文件:包括sentencepiece.bpe.model、tokenizer.json等分词器配置文件
- 训练状态文件:trainer_state.json和training_args.bin记录了训练过程中的状态和参数
- 随机状态文件:rng_state_*.pth保存了训练时的随机数生成器状态
- 优化器状态文件:在global_step子目录中的zero_pp_rank_*文件存储了分布式训练的优化器状态
微调模型的使用方法
根据微调方式的不同,使用微调后的模型有两种主要方法:
直接微调模型的使用
如果采用的是直接微调(非LoRA方式),可以直接使用微调后的模型路径进行推理。使用方法如下:
model_finetuned = BGEM3FlagModel(
path_to_finetuned_checkpoint,
devices="cuda:0", # 可使用"cpu"如果没有GPU
pooling_method='cls',
cache_dir=your_cache_directory
)
其中path_to_finetuned_checkpoint应指向包含微调结果的目录(如示例中的checkpoint-15478)。
LoRA微调模型的使用
如果采用了LoRA(低秩适应)方式进行微调,则需要先将LoRA适配器与基础模型合并,然后才能使用合并后的模型进行推理。合并过程需要专门的脚本处理。
技术要点说明
-
模型权重文件:safetensors格式是Hugging Face推荐的安全权重存储格式,相比传统的pth/pt文件更安全可靠。
-
分布式训练相关文件:zero_pp_rank_*等文件是使用DeepSpeed等分布式训练框架时生成的,普通推理场景下不需要关心这些文件。
-
随机状态文件:主要用于恢复训练,推理时不需要使用。
-
分词器文件:确保使用与微调时相同的分词器配置,这对获得一致的推理结果至关重要。
最佳实践建议
-
对于生产环境使用,建议将微调后的模型导出为更简洁的格式,只保留必要的模型权重和配置文件。
-
使用与训练时相同的环境配置(如相同的CUDA版本、PyTorch版本等)进行推理,以确保兼容性。
-
对于大型模型,可以考虑使用量化技术减小模型体积并提高推理速度。
-
定期验证微调后模型的性能,确保微调没有引入意外的行为变化。
通过正确理解和使用FlagEmbedding项目的微调结果,开发者可以有效地将微调后的模型应用于各种实际场景,如文本嵌入、语义搜索等任务。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0129
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
703
166
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
683
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
150
51
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
928
82