Async-profiler新增全事件采集功能解析
背景介绍
Async-profiler作为一款强大的Java性能分析工具,长期以来支持多种不同类型的事件采集,包括CPU、内存分配、锁竞争等。在实际生产环境中,开发者通常需要根据具体问题选择特定的事件类型进行采集分析。然而,在持续集成(CI)和集成测试场景下,开发者更希望能够一次性采集所有可能的事件数据,以便在问题出现时能够获得全面的分析依据。
功能设计
最新版本的Async-profiler引入了一个重要的新特性——--all参数。这个参数的设计理念是提供一种"一键式"的全面数据采集方案,让开发者无需手动配置多个事件类型。
该参数实际上是以下事件类型默认配置的快捷方式:
- wall (挂钟时间分析)
- alloc (内存分配分析)
- live (存活对象分析)
- lock (锁竞争分析)
- nativemem (本地内存分析)
值得注意的是,设计团队经过讨论决定不将cpu事件包含在默认的--all集合中,因为wall事件已经能够提供足够全面的线程状态信息,同时避免了额外的性能开销。
灵活配置
--all参数的设计充分考虑了灵活性。开发者可以在启用全事件采集的同时,对特定事件进行单独配置。例如:
--all --wall 200ms
这个命令表示启用所有默认事件采集,同时将wall事件的采样间隔调整为200毫秒。这种设计既满足了全面采集的需求,又保留了细粒度控制的能力。
技术实现
在底层实现上,--all参数并不是简单地硬编码一组事件,而是采用了智能的叠加逻辑。当与其他事件参数组合使用时,它会自动合并而不是覆盖用户指定的其他事件配置。这种实现方式使得工具既保持了简单性,又不失灵活性。
使用场景
这个新特性特别适合以下场景:
- 持续集成环境:在自动化测试中全面采集性能数据,便于后续分析
- 问题复现困难的生产环境:当问题难以复现时,全面采集可以确保不遗漏任何关键信息
- 性能基准测试:需要多维度评估系统性能时
性能考量
虽然全事件采集提供了最全面的数据,但开发者仍需注意其对系统性能的影响。不同事件的采集开销差异较大,在性能敏感的环境中,建议根据实际情况选择必要的事件子集,或调整采样频率以平衡开销和数据质量。
总结
Async-profiler的--all参数为开发者提供了一种简单而强大的全面性能数据采集方案。它既满足了CI/CD等场景下对全面数据的需求,又通过灵活的配置选项保持了工具的适应性。这一改进进一步巩固了Async-profiler作为Java性能分析首选工具的地位。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00