多核t-SNE(Multicore-TSNE)安装与使用指南
2024-10-09 23:15:58作者:尤辰城Agatha
多核t-SNE是Dmitry Ulyanov开发的一个开源项目,它提供了基于Python和Torch的并行版本Barnes-Hut t-SNE实现。此项目优化了数据降维过程,特别是对于大规模数据集,通过利用多个核心来加速计算。以下是关于该项目的基本结构、启动文件以及配置文件的详细介绍。
1. 项目目录结构及介绍
项目的主要目录结构如下:
Multicore-TSNE/
├── appveyor.yml # AppVeyor持续集成配置文件
├── gitignore # Git忽略文件列表
├── travis.yml # Travis CI的配置文件
├── LICENSE.txt # 许可证文件
├── MANIFEST.in # 构建时包含的额外文件清单
├── README.md # 项目说明文档
├── mnist-tsne.png # 示例图
├── requirements.txt # 项目依赖列表
├── setup.py # Python打包和安装脚本
├── tsne-embedding.py # 可能用于演示或测试的脚本
└── multicore_tsne # 核心源码模块
├── __init__.py # 初始化文件
└── ...
multicore_tsne目录包含了主要的代码实现。appveyor.yml和travis.yml分别是Windows和Linux平台上的自动化构建和测试配置。requirements.txt列出了运行项目所需的Python库。setup.py是用于安装项目的脚本。README.md包含了项目的概述、性能比较、安装与使用方法等重要信息。
2. 项目的启动文件介绍
在多核t-SNE中,并没有一个特定的“启动”文件,而是通过Python编程调用来使用其功能。通常,用户会在自己的Python脚本或者交互环境中导入MulticoreTSNE类来开始使用,如以下示例所示:
from MulticoreTSNE import MulticoreTSNE as TSNE
然后,通过这个类实例化并调用其方法来进行数据降维。
3. 项目的配置文件介绍
项目并没有传统意义上的配置文件。不过,通过环境变量或参数传递给MulticoreTSNE类实例来配置行为。例如,在调用fit_transform之前设置n_jobs参数来控制使用的CPU核心数量,即并行处理的程度。其他的配置主要是通过初始化MulticoreTSNE类时设定的参数来完成,这些参数包括但不限于perplexity, learning_rate, 等,它们可以直接在代码中指定。
实际配置示例
tsne_instance = TSNE(n_components=2, perplexity=30, learning_rate=200, n_jobs=4)
embedding = tsne_instance.fit_transform(your_data)
在上述示例中,your_data是待降维的数据矩阵,而t_sne_instance的初始化参数就是所谓的“配置”。
总结,多核t-SNE项目强调的是通过Python接口进行灵活配置而非依赖于外部配置文件来管理设置,这使得它更加适合于集成到各种数据分析流程之中。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
531
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355