PureSwift Bluetooth 项目教程
1. 项目介绍
PureSwift Bluetooth 是一个纯 Swift 编写的蓝牙库,旨在为开发者提供一个简单、高效的蓝牙通信解决方案。该项目支持多种蓝牙协议,包括低功耗蓝牙(Bluetooth Low Energy, BLE)和经典蓝牙(Classic Bluetooth)。PureSwift Bluetooth 库的设计目标是提供一个易于集成和使用的 API,使得开发者能够快速实现蓝牙设备的连接和数据传输。
2. 项目快速启动
2.1 安装
PureSwift Bluetooth 可以通过 Swift Package Manager (SPM) 进行安装。在你的 Package.swift 文件中添加以下依赖:
import PackageDescription
let package = Package(
name: "YourProjectName",
dependencies: [
.package(url: "https://github.com/PureSwift/Bluetooth.git", from: "6.4.3")
],
targets: [
.target(
name: "YourTargetName",
dependencies: ["Bluetooth"]),
]
)
2.2 基本使用
以下是一个简单的示例,展示如何使用 PureSwift Bluetooth 库来创建一个蓝牙 UUID 和地址:
import Bluetooth
// 创建一个 128 位的蓝牙 UUID
let uuid128bit = BluetoothUUID(rawValue: "60F14FE2-F972-11E5-B84F-23E070D5A8C7")
// 创建一个 16 位的蓝牙 UUID
let uuid16bit = BluetoothUUID(rawValue: "FEA9")
// 创建一个蓝牙地址
let address = BluetoothAddress(rawValue: "00:1A:7D:DA:71:13")
print("128-bit UUID: \(uuid128bit!)")
print("16-bit UUID: \(uuid16bit!)")
print("Bluetooth Address: \(address!)")
3. 应用案例和最佳实践
3.1 智能家居设备控制
PureSwift Bluetooth 可以用于开发智能家居设备的控制应用。例如,通过蓝牙连接智能灯泡,并发送控制命令来改变灯光的颜色和亮度。
3.2 健康监测设备
在健康监测设备中,PureSwift Bluetooth 可以用于实时传输心率、血压等健康数据。通过蓝牙连接到智能手表或健康监测设备,可以实时获取用户的健康数据并进行分析。
3.3 最佳实践
- 错误处理:在蓝牙通信中,网络不稳定或设备断开连接是常见问题。建议在代码中添加错误处理机制,以确保应用的稳定性。
- 性能优化:对于需要高频率数据传输的应用,建议优化蓝牙通信的数据包大小和传输频率,以减少功耗和提高响应速度。
4. 典型生态项目
4.1 BluetoothLinux
BluetoothLinux 是一个纯 Swift 实现的 Linux 蓝牙堆栈,与 PureSwift Bluetooth 库配合使用,可以在 Linux 平台上实现完整的蓝牙通信解决方案。
4.2 GATT
GATT(Generic Attribute Profile)是一个用于蓝牙低功耗设备的通用属性配置文件。PureSwift Bluetooth 库提供了对 GATT 的支持,使得开发者可以轻松实现蓝牙设备的属性读写操作。
4.3 Netlink
Netlink 是一个用于与 Linux 内核通信的 Swift 库。在 Linux 平台上,Netlink 可以与 PureSwift Bluetooth 库结合使用,实现更复杂的蓝牙通信功能。
通过以上模块的介绍,开发者可以快速上手 PureSwift Bluetooth 项目,并将其应用于各种蓝牙通信场景中。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00