WebDataset与PyTorch Lightning结合实现大规模数据集高效训练
2025-06-30 12:38:35作者:曹令琨Iris
背景介绍
在处理大规模数据集时,传统的PyTorch数据加载方式往往会遇到内存不足、加载速度慢等问题。WebDataset作为一种高效的解决方案,能够很好地处理TB级别的大规模数据集。本文将详细介绍如何将WebDataset与PyTorch Lightning框架结合,实现高效的大规模数据训练。
核心挑战
在大规模数据集训练中,我们面临几个关键挑战:
- 多GPU支持:大规模数据集训练必须支持多GPU并行
- 进度可视化:需要准确显示每个epoch的训练步数
- 数据分片处理:需要高效处理分布在多个tar文件中的数据
解决方案架构
1. 数据预处理与统计
首先需要统计数据集的基本信息。对于Laion115M这样的超大规模数据集,我们编写并行脚本扫描所有tar文件,记录每个文件包含的样本数,并将结果存储在JSON文件中:
{
"/data/laion115m/00000.tar": 1147,
"/data/laion115m/00001.tar": 1203,
...
}
2. WebDataset基础使用
WebDataset的基本使用方式如下:
dataset = wds.WebDataset(url)
.shuffle(1000)
.decode('pilrgb', handler=wds.warn_and_continue)
.to_tuple("jpg", "txt", handler=wds.warn_and_continue)
.map(transforms)
3. 自定义IterableDataset实现
为了实现多GPU支持和进度显示,我们自定义IterableDataset:
class Iter_ds(torch.utils.data.IterableDataset):
def __init__(self, urls, transforms, n_sample):
self.urls = urls
self.transforms = transforms
self.n_sample = n_sample
def __len__(self):
return self.n_sample // get_world_size()
def __iter__(self):
process_rank = get_rank()
world_size = get_world_size()
for url in self.urls:
dataset = wds.WebDataset(url, nodesplitter=wds.split_by_worker)
.shuffle(1000)
.decode('pilrgb', handler=wds.warn_and_continue)
.to_tuple("jpg", "txt", handler=wds.warn_and_continue)
.map(self.transforms)
for batch_id, sample in enumerate(dataset):
if batch_id % world_size == process_rank:
yield sample
else:
continue
4. PyTorch Lightning集成
将上述实现集成到PyTorch Lightning的DataModule中:
class Laion115M(pl.LightningDataModule):
def __init__(self, data_dir, split_ratio, img_transforms, txt_transforms,
num_workers=4, batch_size=16, num_epoch=1, pin_memory=False):
super().__init__()
self.data_dir = Path(data_dir)
self.split_ratio = split_ratio
self.img_transforms = img_transforms
self.txt_transforms = txt_transforms
self.transforms = lambda tup: (self.img_transforms(tup[0]), self.txt_transforms(tup[1]))
self.batch_size = batch_size
self.num_epoch = num_epoch
self.num_workers = num_workers
self.pin_memory = pin_memory
def prepare_data(self):
with open(self.data_dir, 'r') as f:
self.tar_dict = json.load(f)
tar_lst = list(self.tar_dict.keys())
n_shard = len(tar_lst)
tra_ratio, val_ratio, _ = self.split_ratio
self.tra_lst = tar_lst[:int(n_shard * tra_ratio)]
self.val_lst = tar_lst[len(self.tra_lst):len(self.tra_lst)+int(n_shard * val_ratio)]
self.tst_lst = tar_lst[len(self.tra_lst)+len(self.val_lst):]
def _get_sample_num(self, tar_lst):
return sum(self.tar_dict[tar_key] for tar_key in tar_lst)
def setup(self, stage='train'):
self.prepare_data()
if stage == 'train':
n_tra_sample = self._get_sample_num(self.tra_lst)
self.laion_train = Iter_ds(self.tra_lst, transforms=self.transforms, n_sample=n_tra_sample)
n_val_sample = self._get_sample_num(self.val_lst)
self.laion_valid = Iter_ds(self.val_lst, transforms=self.transforms, n_sample=n_val_sample)
else:
n_tst_sample = self._get_sample_num(self.tst_lst)
self.laion_test = Iter_ds(self.tst_lst, transforms=self.transforms, n_sample=n_tst_sample)
def train_dataloader(self):
return torch.utils.data.DataLoader(
self.laion_train,
batch_size=self.batch_size,
shuffle=False,
pin_memory=True,
num_workers=self.num_workers,
prefetch_factor=2,
drop_last=True
)
性能优化技巧
-
多节点训练注意事项:
- 网络带宽是瓶颈,尽量减少节点间通信
- 梯度同步会占用大量网络资源
- 每个GPU对应一个进程,进程间通信也会影响性能
-
数据加载优化:
- 使用
pin_memory=True
将数据预先加载到内存 - 设置
prefetch_factor
预取数据 - 合理设置
num_workers
数量
- 使用
-
数据打乱策略:
- 对于分类数据集等有序数据必须打乱
- 对于Laion115M等网络爬取数据可不严格打乱
- 使用
DistributedSampler
自动处理多GPU数据分片
版本兼容性
经过测试,以下版本组合工作良好:
- WebDataset: 0.2.86
- PyTorch Lightning: 2.2.1
- PyTorch: 2.2.0+cu118
总结
本文介绍了WebDataset与PyTorch Lightning结合处理大规模数据集的完整方案。通过自定义IterableDataset和合理的数据分片策略,我们实现了多GPU支持、训练进度可视化等关键功能。对于超大规模数据集训练,这种方案能够有效解决内存和性能问题,是处理TB级数据集的理想选择。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~062CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava05GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
54
469

deepin linux kernel
C
22
5

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
880
519

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
336
1.1 K

React Native鸿蒙化仓库
C++
181
264

一个高性能、可扩展、轻量、省心的仓颉Web框架。Rest, 宏路由,Json, 中间件,参数绑定与校验,文件上传下载,MCP......
Cangjie
87
14

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.09 K
0

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
361
381

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
613
60