WebDataset与PyTorch Lightning结合实现大规模数据集高效训练
2025-06-30 09:00:23作者:曹令琨Iris
背景介绍
在处理大规模数据集时,传统的PyTorch数据加载方式往往会遇到内存不足、加载速度慢等问题。WebDataset作为一种高效的解决方案,能够很好地处理TB级别的大规模数据集。本文将详细介绍如何将WebDataset与PyTorch Lightning框架结合,实现高效的大规模数据训练。
核心挑战
在大规模数据集训练中,我们面临几个关键挑战:
- 多GPU支持:大规模数据集训练必须支持多GPU并行
- 进度可视化:需要准确显示每个epoch的训练步数
- 数据分片处理:需要高效处理分布在多个tar文件中的数据
解决方案架构
1. 数据预处理与统计
首先需要统计数据集的基本信息。对于Laion115M这样的超大规模数据集,我们编写并行脚本扫描所有tar文件,记录每个文件包含的样本数,并将结果存储在JSON文件中:
{
"/data/laion115m/00000.tar": 1147,
"/data/laion115m/00001.tar": 1203,
...
}
2. WebDataset基础使用
WebDataset的基本使用方式如下:
dataset = wds.WebDataset(url)
.shuffle(1000)
.decode('pilrgb', handler=wds.warn_and_continue)
.to_tuple("jpg", "txt", handler=wds.warn_and_continue)
.map(transforms)
3. 自定义IterableDataset实现
为了实现多GPU支持和进度显示,我们自定义IterableDataset:
class Iter_ds(torch.utils.data.IterableDataset):
def __init__(self, urls, transforms, n_sample):
self.urls = urls
self.transforms = transforms
self.n_sample = n_sample
def __len__(self):
return self.n_sample // get_world_size()
def __iter__(self):
process_rank = get_rank()
world_size = get_world_size()
for url in self.urls:
dataset = wds.WebDataset(url, nodesplitter=wds.split_by_worker)
.shuffle(1000)
.decode('pilrgb', handler=wds.warn_and_continue)
.to_tuple("jpg", "txt", handler=wds.warn_and_continue)
.map(self.transforms)
for batch_id, sample in enumerate(dataset):
if batch_id % world_size == process_rank:
yield sample
else:
continue
4. PyTorch Lightning集成
将上述实现集成到PyTorch Lightning的DataModule中:
class Laion115M(pl.LightningDataModule):
def __init__(self, data_dir, split_ratio, img_transforms, txt_transforms,
num_workers=4, batch_size=16, num_epoch=1, pin_memory=False):
super().__init__()
self.data_dir = Path(data_dir)
self.split_ratio = split_ratio
self.img_transforms = img_transforms
self.txt_transforms = txt_transforms
self.transforms = lambda tup: (self.img_transforms(tup[0]), self.txt_transforms(tup[1]))
self.batch_size = batch_size
self.num_epoch = num_epoch
self.num_workers = num_workers
self.pin_memory = pin_memory
def prepare_data(self):
with open(self.data_dir, 'r') as f:
self.tar_dict = json.load(f)
tar_lst = list(self.tar_dict.keys())
n_shard = len(tar_lst)
tra_ratio, val_ratio, _ = self.split_ratio
self.tra_lst = tar_lst[:int(n_shard * tra_ratio)]
self.val_lst = tar_lst[len(self.tra_lst):len(self.tra_lst)+int(n_shard * val_ratio)]
self.tst_lst = tar_lst[len(self.tra_lst)+len(self.val_lst):]
def _get_sample_num(self, tar_lst):
return sum(self.tar_dict[tar_key] for tar_key in tar_lst)
def setup(self, stage='train'):
self.prepare_data()
if stage == 'train':
n_tra_sample = self._get_sample_num(self.tra_lst)
self.laion_train = Iter_ds(self.tra_lst, transforms=self.transforms, n_sample=n_tra_sample)
n_val_sample = self._get_sample_num(self.val_lst)
self.laion_valid = Iter_ds(self.val_lst, transforms=self.transforms, n_sample=n_val_sample)
else:
n_tst_sample = self._get_sample_num(self.tst_lst)
self.laion_test = Iter_ds(self.tst_lst, transforms=self.transforms, n_sample=n_tst_sample)
def train_dataloader(self):
return torch.utils.data.DataLoader(
self.laion_train,
batch_size=self.batch_size,
shuffle=False,
pin_memory=True,
num_workers=self.num_workers,
prefetch_factor=2,
drop_last=True
)
性能优化技巧
-
多节点训练注意事项:
- 网络带宽是瓶颈,尽量减少节点间通信
- 梯度同步会占用大量网络资源
- 每个GPU对应一个进程,进程间通信也会影响性能
-
数据加载优化:
- 使用
pin_memory=True将数据预先加载到内存 - 设置
prefetch_factor预取数据 - 合理设置
num_workers数量
- 使用
-
数据打乱策略:
- 对于分类数据集等有序数据必须打乱
- 对于Laion115M等网络爬取数据可不严格打乱
- 使用
DistributedSampler自动处理多GPU数据分片
版本兼容性
经过测试,以下版本组合工作良好:
- WebDataset: 0.2.86
- PyTorch Lightning: 2.2.1
- PyTorch: 2.2.0+cu118
总结
本文介绍了WebDataset与PyTorch Lightning结合处理大规模数据集的完整方案。通过自定义IterableDataset和合理的数据分片策略,我们实现了多GPU支持、训练进度可视化等关键功能。对于超大规模数据集训练,这种方案能够有效解决内存和性能问题,是处理TB级数据集的理想选择。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C048
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 Python开发者的macOS终极指南:VSCode安装配置全攻略 PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
440
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
818
390
Ascend Extension for PyTorch
Python
248
285
React Native鸿蒙化仓库
JavaScript
275
329
暂无简介
Dart
701
164
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
135
48
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
677
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
554
110