WebDataset与PyTorch Lightning结合实现大规模数据集高效训练
2025-06-30 15:24:55作者:曹令琨Iris
背景介绍
在处理大规模数据集时,传统的PyTorch数据加载方式往往会遇到内存不足、加载速度慢等问题。WebDataset作为一种高效的解决方案,能够很好地处理TB级别的大规模数据集。本文将详细介绍如何将WebDataset与PyTorch Lightning框架结合,实现高效的大规模数据训练。
核心挑战
在大规模数据集训练中,我们面临几个关键挑战:
- 多GPU支持:大规模数据集训练必须支持多GPU并行
- 进度可视化:需要准确显示每个epoch的训练步数
- 数据分片处理:需要高效处理分布在多个tar文件中的数据
解决方案架构
1. 数据预处理与统计
首先需要统计数据集的基本信息。对于Laion115M这样的超大规模数据集,我们编写并行脚本扫描所有tar文件,记录每个文件包含的样本数,并将结果存储在JSON文件中:
{
"/data/laion115m/00000.tar": 1147,
"/data/laion115m/00001.tar": 1203,
...
}
2. WebDataset基础使用
WebDataset的基本使用方式如下:
dataset = wds.WebDataset(url)
.shuffle(1000)
.decode('pilrgb', handler=wds.warn_and_continue)
.to_tuple("jpg", "txt", handler=wds.warn_and_continue)
.map(transforms)
3. 自定义IterableDataset实现
为了实现多GPU支持和进度显示,我们自定义IterableDataset:
class Iter_ds(torch.utils.data.IterableDataset):
def __init__(self, urls, transforms, n_sample):
self.urls = urls
self.transforms = transforms
self.n_sample = n_sample
def __len__(self):
return self.n_sample // get_world_size()
def __iter__(self):
process_rank = get_rank()
world_size = get_world_size()
for url in self.urls:
dataset = wds.WebDataset(url, nodesplitter=wds.split_by_worker)
.shuffle(1000)
.decode('pilrgb', handler=wds.warn_and_continue)
.to_tuple("jpg", "txt", handler=wds.warn_and_continue)
.map(self.transforms)
for batch_id, sample in enumerate(dataset):
if batch_id % world_size == process_rank:
yield sample
else:
continue
4. PyTorch Lightning集成
将上述实现集成到PyTorch Lightning的DataModule中:
class Laion115M(pl.LightningDataModule):
def __init__(self, data_dir, split_ratio, img_transforms, txt_transforms,
num_workers=4, batch_size=16, num_epoch=1, pin_memory=False):
super().__init__()
self.data_dir = Path(data_dir)
self.split_ratio = split_ratio
self.img_transforms = img_transforms
self.txt_transforms = txt_transforms
self.transforms = lambda tup: (self.img_transforms(tup[0]), self.txt_transforms(tup[1]))
self.batch_size = batch_size
self.num_epoch = num_epoch
self.num_workers = num_workers
self.pin_memory = pin_memory
def prepare_data(self):
with open(self.data_dir, 'r') as f:
self.tar_dict = json.load(f)
tar_lst = list(self.tar_dict.keys())
n_shard = len(tar_lst)
tra_ratio, val_ratio, _ = self.split_ratio
self.tra_lst = tar_lst[:int(n_shard * tra_ratio)]
self.val_lst = tar_lst[len(self.tra_lst):len(self.tra_lst)+int(n_shard * val_ratio)]
self.tst_lst = tar_lst[len(self.tra_lst)+len(self.val_lst):]
def _get_sample_num(self, tar_lst):
return sum(self.tar_dict[tar_key] for tar_key in tar_lst)
def setup(self, stage='train'):
self.prepare_data()
if stage == 'train':
n_tra_sample = self._get_sample_num(self.tra_lst)
self.laion_train = Iter_ds(self.tra_lst, transforms=self.transforms, n_sample=n_tra_sample)
n_val_sample = self._get_sample_num(self.val_lst)
self.laion_valid = Iter_ds(self.val_lst, transforms=self.transforms, n_sample=n_val_sample)
else:
n_tst_sample = self._get_sample_num(self.tst_lst)
self.laion_test = Iter_ds(self.tst_lst, transforms=self.transforms, n_sample=n_tst_sample)
def train_dataloader(self):
return torch.utils.data.DataLoader(
self.laion_train,
batch_size=self.batch_size,
shuffle=False,
pin_memory=True,
num_workers=self.num_workers,
prefetch_factor=2,
drop_last=True
)
性能优化技巧
-
多节点训练注意事项:
- 网络带宽是瓶颈,尽量减少节点间通信
- 梯度同步会占用大量网络资源
- 每个GPU对应一个进程,进程间通信也会影响性能
-
数据加载优化:
- 使用
pin_memory=True将数据预先加载到内存 - 设置
prefetch_factor预取数据 - 合理设置
num_workers数量
- 使用
-
数据打乱策略:
- 对于分类数据集等有序数据必须打乱
- 对于Laion115M等网络爬取数据可不严格打乱
- 使用
DistributedSampler自动处理多GPU数据分片
版本兼容性
经过测试,以下版本组合工作良好:
- WebDataset: 0.2.86
- PyTorch Lightning: 2.2.1
- PyTorch: 2.2.0+cu118
总结
本文介绍了WebDataset与PyTorch Lightning结合处理大规模数据集的完整方案。通过自定义IterableDataset和合理的数据分片策略,我们实现了多GPU支持、训练进度可视化等关键功能。对于超大规模数据集训练,这种方案能够有效解决内存和性能问题,是处理TB级数据集的理想选择。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
344
412
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
605
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
182
暂无简介
Dart
777
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
757
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896