ML_CIA 的安装和配置教程
2025-05-23 16:32:28作者:霍妲思
1. 项目基础介绍和主要编程语言
ML_CIA 是一个开源的机器学习项目,主要涵盖了广告点击率(CTR)预估、推荐系统、深度学习模型以及一些学习笔记和有趣的项目实现。这个项目旨在为机器学习爱好者提供一个实践和学习的平台,包含了多种CTR预估模型的实现,如FM、FFM、DeepFM、DIN等,以及一些深度学习相关的原理和实践。
该项目的主要编程语言是 Python,同时也包含了一些 C++ 代码。
2. 项目使用的关键技术和框架
项目使用了一系列机器学习和深度学习的关键技术,包括但不限于:
- 广告CTR预估模型:如FM(Factorization Machine)、FFM(Field-aware Factorization Machine)、DeepFM、DIN(Deep Interest Network)等。
- 推荐系统:实现了基于深度神经网络的YouTube推荐系统。
- 深度学习模型:如LSTM(Long Short-Term Memory)网络,用于处理序列数据。
- 其他技术:如Batch Normalization、TensorLayer等框架和技术的应用。
3. 项目安装和配置的准备工作及详细步骤
准备工作
在开始安装和配置 ML_CIA 项目之前,请确保您的系统中已经安装了以下环境和依赖:
- Python 3.x
- pip(Python 包管理工具)
- git(版本控制工具)
安装步骤
-
克隆项目仓库
打开命令行工具,执行以下命令克隆项目仓库:
git clone https://github.com/gutouyu/ML_CIA.git cd ML_CIA
-
安装项目依赖
在项目根目录下,执行以下命令安装项目所需的Python包:
pip install -r requirements.txt
如果项目中没有
requirements.txt
文件,则需要手动安装以下依赖:- numpy
- pandas
- tensorflow 或 pytorch(根据项目使用的深度学习框架选择)
- 其他项目可能需要的Python包
-
配置项目环境
根据项目需求,可能需要对环境进行一些配置,例如配置Python虚拟环境、设置环境变量等。
如果需要创建Python虚拟环境,可以使用以下命令:
python -m venv venv source venv/bin/activate # 在 Windows 下使用 `venv\Scripts\activate`
激活虚拟环境后,再安装项目依赖。
-
运行示例代码
根据项目目录结构,找到示例代码或脚本,并执行它来验证安装是否成功。
例如,如果有一个名为
example.py
的示例脚本,可以这样运行:python example.py
以上步骤完成之后,您应该已经成功安装并配置了 ML_CIA 项目。接下来,您可以开始探索项目中的不同模块,并根据需要进一步调整和优化配置。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
205
2.19 K

暂无简介
Dart
514
115

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
62
95

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
976
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
28