Gradle项目中的DefaultArtifactPublicationSet回归问题分析
问题背景
在Gradle 8.14-rc-1版本中,出现了一个关于DefaultArtifactPublicationSet的回归问题。这个问题主要影响了那些通过插件配置Jar任务并修改配置项输出artifact的项目。
问题现象
当开发者尝试在Java插件环境中配置bootJar任务,并将其作为artifact添加到apiElements和runtimeElements配置项时,Gradle会抛出IllegalArgumentException异常。异常发生在DefaultArtifactPublicationSet内部计算artifact值时,因为defaultArtifacts被意外重置。
技术细节
这个问题的核心在于DefaultArtifactPublicationSet类中处理artifact的方式发生了变化。在Gradle 8.14-rc-1中,当尝试计算artifact值时,系统发现defaultArtifacts已经被重置,导致无法正确获取artifact信息。
问题的触发场景通常出现在以下情况:
- 项目应用了Java插件
- 插件尝试配置bootJar任务
- 将bootJar任务作为artifact添加到配置项的输出中
简化重现案例
为了更清楚地理解这个问题,我们可以看一个简化的重现案例:
plugins {
id("base")
}
def jar = tasks.register("jar", Jar)
def apiElements = configurations.create("apiElements") {
outgoing.artifact(jar)
}
def bootJar = tasks.register("bootJar", Jar)
configurations.create("bootArchives") {
outgoing.artifact(bootJar)
}
bootJar.configure {
apiElements.outgoing.artifact(bootJar)
}
这个简化案例清晰地展示了问题发生的条件:当我们在任务配置阶段尝试修改已存在的配置项的artifact时,就会出现问题。
影响范围
这个问题主要影响:
- 使用Gradle 8.14-rc-1版本的项目
- 自定义插件中需要修改配置项artifact的项目
- 特别是那些基于Spring Boot的项目,因为它们通常会配置bootJar任务
解决方案
Gradle团队已经通过PR #33102修复了这个问题。对于遇到此问题的开发者,建议:
- 升级到修复后的Gradle版本
- 如果暂时无法升级,可以考虑回退到8.13版本
- 检查插件中所有修改配置项artifact的代码,确保它们不会在任务配置阶段执行
技术启示
这个问题提醒我们:
- 在Gradle插件开发中,修改配置项artifact时需要特别注意执行时机
- 升级Gradle版本时,应该充分测试artifact相关的配置
- 理解Gradle内部如何处理和缓存artifact信息对于编写健壮的插件非常重要
总结
Gradle 8.14-rc-1中出现的DefaultArtifactPublicationSet回归问题是一个典型的版本升级引入的兼容性问题。通过分析这个问题,我们不仅了解了具体的修复方案,更重要的是加深了对Gradle artifact处理机制的理解。这对于开发高质量的Gradle插件和构建脚本具有重要的指导意义。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00