【亲测免费】 IK Analysis插件安装与使用指南
2026-01-17 09:00:44作者:余洋婵Anita
目录结构及介绍
当你从仓库克隆或下载infinilabs/analysis-ik项目之后, 主要的文件和目录结构包括:
assets: 包含一些资源文件。config: 配置文件所在目录,例如自定义字典。core: 核心源代码部分,包含了主要逻辑实现。elasticsearch: 特别是与Elasticsearch集成相关的代码和配置。licenses: 存放许可文件的地方。opensearch: 与OpenSearch兼容性的相关代码。travis.yml: Travis CI 配置脚本,用于持续集成。
此外还有:
.gitignore,.travis.yml,CODE_OF_CONDUCT.md,LICENSE.txt,README.md,pom.xml等基础文件,用于控制仓库行为和管理软件包构建流程等。
启动文件介绍
对于analysis-ik插件而言,没有一个明确的“启动”概念如同应用那样启动,而是被设计成与Elasticsearch或OpenSearch一起部署作为插件。该插件的构建和安装过程通过以下步骤实现:
- 编译: 使用Maven命令
mvn package来打包项目,创建可分配的插件包。 - 复制和解压: 将
elasticsearch-analysis-ik-target/releases/elasticsearch-analysis-ik-*目录中的zip文件拷贝并解压到Elasticsearch插件目录(默认位置是plugins/ik)。
完成后需重启Elasticsearch服务以加载新插件,使其生效。
配置文件介绍
配置IK Analysis插件通常涉及两个关键点:
- 在
elasticsearch.yml中添加分析器设置。 - 提供自定义字典。
在elasticsearch.yml中配置分析器
可以通过以下方式向Elasticsearch主配置文件中增加自定义分析器设置:
index.analysis.analyzer.my_ik.type: "custom"
index.analysis.analyzer.my_ik.tokenizer: "ik_max_word"
# 或者 "ik_smart"
这使得能够指定特定索引上使用的分析器,其中my_ik可以替换为任何你选择的名字。
自定义字典
除了预设的字典外,你可以放置自己的字典文件在Elasticsearch插件目录下的dict子目录里,例如plugins/ik/dict。然后通过elasticsearch.yml来引用这些字典,在settings字段下加入以下内容:
path.data: "/path/to/data"
path.plugins: "/path/to/plugins"
cluster.name: "es-cluster"
node.name: "node-01"
discovery.zen.ping.unicast.hosts: ["host1", "host2"]
network.host: 192.168.0.1
http.port: 9200
xpack.security.enabled: true
xpack.security.http.ssl.enabled: false
index.number_of_shards: 1
index.number_of_replicas: 1
# 添加以下部分
path.dict: "/path/to/custom/dictionaries/"
在这个示例中,path.dict路径指明了自定义字典的位置。当然,实际路径应替代为真实存放字典文件的目录。
通过这样的配置和集成,IK Analysis插件可以在Elasticsearch环境中提供强大的中文文本分析能力,无论是在建立索引时还是查询处理中都能有效识别中文词汇单元,提高搜索效率与精确性。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
531
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355