GLNet:超高清图像高效内存分割解决方案
在当今的数据驱动世界中,处理高分辨率图像的分割任务变得越来越重要,特别是在城市规划、医疗影像分析等领域。然而,这样的任务对算法效率,特别是GPU内存提出了严峻挑战。这就是我们引入**GLNet(Global-Local Networks)**的原因——一个为超高清图像进行高效内存管理且高质量分割的深度学习框架。
项目简介
GLNet是一种创新的深度学习模型,专为处理高达3000万像素的超高清图像而设计,其训练只需要一块1080Ti显卡,并且在推理阶段所需的GPU内存不到2GB。不仅如此,GLNet还在保持高效的同时,提供了与现有模型相比更为出色的分割性能。

上图展示了GLNet在准确度和内存使用之间的平衡表现。通过集成全局和局部信息的紧凑方式,GLNet实现了在确保精度的同时,显著减少内存消耗。

GLNet已在多个超高清数据集上进行了测试,包括DeepGlobe、ISIC和Inria Aerial,展示了其在各种场景中的广泛应用潜力。
技术分析
GLNet的核心是全球-局部分支的设计,其中,全局分支处理下采样的图像,局部分支则处理经过裁剪的部分。通过深度特征图共享和特征图正则化,这两个分支协同工作,形成了一种完整的基于补丁的全局-局部深层协作模式。

应用场景
GLNet不仅适用于城市规划中的遥感图像解析,还可应用于医学成像的病灶检测,以及任何需要处理高分辨率图像以获取精细区域信息的场合。例如,在智能交通系统中,它可以用于精确识别道路设施;在医疗领域,它可帮助医生更准确地定位皮肤病变。
项目特点
- 内存效率:仅需1080Ti即可进行训练,推理时GPU内存占用低于2GB。
- 高质量分割:即便在高分辨率图像上,也展现出优越的分割性能。
- 全球-局部融合:结合全局视野和局部细节,提供全面的信息捕捉。
- 易于使用:兼容Python 3.5以上版本,依赖项明确,提供详细的训练和评估脚本。
如果你正在寻找一种能够在有限资源条件下处理超高清图像分割问题的方法,GLNet是一个不容错过的选择。现在就加入并体验它的强大功能吧!
引用
如果你在研究中使用了这个代码库,请引用以下论文:
@inproceedings{chen2019GLNET,
title={Collaborative Global-Local Networks for Memory-Efficient Segmentation of Ultra-High Resolution Images},
author={Chen, Wuyang and Jiang, Ziyu and Wang, Zhangyang and Cui, Kexin and Qian, Xiaoning},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
year={2019}
}
最后,我们要感谢Andrew Jiang教授和Junru Wu在实验上的帮助。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C091
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00