首页
/ GLNet:超高清图像高效内存分割解决方案

GLNet:超高清图像高效内存分割解决方案

2024-05-20 09:35:03作者:彭桢灵Jeremy

在当今的数据驱动世界中,处理高分辨率图像的分割任务变得越来越重要,特别是在城市规划、医疗影像分析等领域。然而,这样的任务对算法效率,特别是GPU内存提出了严峻挑战。这就是我们引入**GLNet(Global-Local Networks)**的原因——一个为超高清图像进行高效内存管理且高质量分割的深度学习框架。

项目简介

GLNet是一种创新的深度学习模型,专为处理高达3000万像素的超高清图像而设计,其训练只需要一块1080Ti显卡,并且在推理阶段所需的GPU内存不到2GB。不仅如此,GLNet还在保持高效的同时,提供了与现有模型相比更为出色的分割性能。

GLNet:超高清图像高效内存分割解决方案

上图展示了GLNet在准确度和内存使用之间的平衡表现。通过集成全局和局部信息的紧凑方式,GLNet实现了在确保精度的同时,显著减少内存消耗。

GLNet:超高清图像高效内存分割解决方案

GLNet已在多个超高清数据集上进行了测试,包括DeepGlobe、ISIC和Inria Aerial,展示了其在各种场景中的广泛应用潜力。

技术分析

GLNet的核心是全球-局部分支的设计,其中,全局分支处理下采样的图像,局部分支则处理经过裁剪的部分。通过深度特征图共享和特征图正则化,这两个分支协同工作,形成了一种完整的基于补丁的全局-局部深层协作模式。

GLNet:超高清图像高效内存分割解决方案 GLNet:超高清图像高效内存分割解决方案

应用场景

GLNet不仅适用于城市规划中的遥感图像解析,还可应用于医学成像的病灶检测,以及任何需要处理高分辨率图像以获取精细区域信息的场合。例如,在智能交通系统中,它可以用于精确识别道路设施;在医疗领域,它可帮助医生更准确地定位皮肤病变。

项目特点

  1. 内存效率:仅需1080Ti即可进行训练,推理时GPU内存占用低于2GB。
  2. 高质量分割:即便在高分辨率图像上,也展现出优越的分割性能。
  3. 全球-局部融合:结合全局视野和局部细节,提供全面的信息捕捉。
  4. 易于使用:兼容Python 3.5以上版本,依赖项明确,提供详细的训练和评估脚本。

如果你正在寻找一种能够在有限资源条件下处理超高清图像分割问题的方法,GLNet是一个不容错过的选择。现在就加入并体验它的强大功能吧!

引用

如果你在研究中使用了这个代码库,请引用以下论文:

@inproceedings{chen2019GLNET,
  title={Collaborative Global-Local Networks for Memory-Efficient Segmentation of Ultra-High Resolution Images},
  author={Chen, Wuyang and Jiang, Ziyu and Wang, Zhangyang and Cui, Kexin and Qian, Xiaoning},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year={2019}
}

最后,我们要感谢Andrew Jiang教授和Junru Wu在实验上的帮助。

热门项目推荐
相关项目推荐

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
826
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
9
1
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicmsanqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5