SavvyCAN V220版本发布:CAN总线分析工具的重大更新
SavvyCAN是一款功能强大的开源CAN总线分析工具,广泛应用于汽车电子、工业控制等领域的网络通信调试与数据分析。该项目由Collin Kidder创建并维护,社区贡献者众多,支持多种CAN硬件接口和日志格式。最新发布的V220版本带来了多项重要改进和功能增强,显著提升了用户体验和工具性能。
核心功能改进
本次更新在DBC文件处理方面进行了多项修复,解决了长期存在的一些兼容性问题。DBC是CAN通信中描述信号和报文的标准格式,SavvyCAN现在能够更准确地解析和处理DBC文件中的各种定义,包括对浮点信号类型(SIG_VALTYPE_)的支持,这使得工具能够正确显示和处理CAN总线上的浮点数值信号。
在信号处理方面,改进了图形化信号编辑器和信号查看器的消息过滤功能,用户可以更高效地筛选和查看特定信号。同时,信号值的显示格式也得到了优化,现在会在数值和单位之间自动添加空格,使显示更加规范易读。
硬件支持增强
V220版本显著扩展了对各类CAN接口硬件的支持。对于LAWICEL协议设备,新增了3000000波特率模式的支持,并实现了完整的CAN-FD功能支持,包括数据速率选择。这使得SavvyCAN能够充分利用高性能CAN-FD硬件的全部能力。
Qt SerialBus插件现在支持监听模式(ListenOnly),这一特性对于被动监测CAN网络流量非常有用,不会对总线造成任何干扰。此外,修复了设备连接后选择状态保持的问题,改善了多设备管理体验。
日志格式兼容性
新版本增加了对多种日志格式的支持和优化。新增了canlogserver远程捕获功能,可以从网络设备获取CAN数据。Wireshark SocketCAN日志格式现在被完整支持,包括扩展CAN ID的正确处理。对于candump格式,现在支持超过8字节的长帧记录,适应CAN-FD应用场景。
LAWICEL协议的时间戳处理得到了修正,确保日志中的时间信息准确无误。CANserver格式现在支持更高精度的时间分辨率,满足精确时间分析需求。TRC CanHacker加载器增加了逗号检查,提高了文件兼容性。
用户界面与体验
在用户界面方面,V220版本进行了多项优化。修正了表格行高的计算方式,使数据显示更加整齐。设备控制台窗口修复了重复显示的问题。模糊测试窗口(FuzzingWindow)新增了批量设置按钮,可以一键设置所有信号为高/低/自动值,大大简化了测试配置流程。
连接配置现在可以保存总线速率和CAN-FD参数,方便用户快速恢复工作环境。系统要求也进行了更新,现在需要C++17标准,这为后续功能开发奠定了基础。
脚本与自动化
脚本接口得到了显著增强,提供了更强大的自动化能力。用户现在可以通过脚本更灵活地控制SavvyCAN的各项功能,实现复杂的测试和分析流程自动化。解码消息文本的输出格式也进行了优化,不再添加多余的空行,使日志更加紧凑易读。
跨平台支持
V220版本继续强化跨平台支持。为Linux系统新增了安装脚本,简化了部署过程。macOS平台同时提供arm64和x64架构的版本,全面支持苹果芯片和Intel处理器的Mac电脑。Windows用户可以获得预编译的64位版本,开箱即用。
总结
SavvyCAN V220版本汇集了来自众多贡献者的改进,在稳定性、功能性和用户体验方面都有显著提升。特别是对CAN-FD的完整支持、多种日志格式的兼容性增强以及DBC处理的改进,使其成为更加强大的CAN总线分析工具。开源社区的持续贡献确保了项目的活力,也为专业用户和爱好者提供了可靠的CAN网络分析解决方案。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00