Stable Baselines3中MultiInputPolicy模型的ONNX导出实践指南
2025-05-22 19:15:19作者:范垣楠Rhoda
背景介绍
在强化学习模型部署过程中,将训练好的策略网络导出为ONNX格式是一个常见需求。本文针对Stable Baselines3框架中基于字典观测空间(Dict observation space)的MultiInputActorCriticPolicy模型,详细讲解其ONNX导出方法。
核心挑战
当使用字典类型的观测空间时,传统的ONNX导出方式会遇到几个关键问题:
- PyTorch原生
torch.onnx.export对字典输入支持有限 - 观测数据需要正确处理batch维度
- ONNX运行时输入名称需要与导出模型匹配
解决方案演进
初始尝试方案
早期尝试直接封装策略网络会出现类型不匹配错误:
# 典型错误示例
th.onnx.export(policy, obs_dict, "model.onnx") # 会报"Expected dict, got torch.Tensor"
动态导出方案
使用PyTorch的dynamo_export方法可以部分解决问题:
onnx_program = th.onnx.dynamo_export(onnx_policy, obs_tensor)
但会产生版本兼容性警告,且该方法已被标记为即将弃用。
最终稳定方案
最新PyTorch版本推荐使用带dynamo参数的导出方式:
model_input = {"observation": obs_tensor}
th.onnx.export(
onnx_policy,
args=(model_input,),
f="model.onnx",
dynamo=True
)
完整实现步骤
- 环境准备
class CustomEnv(gym.Env):
def __init__(self):
self.observation_space = gym.spaces.Dict({
"sensor1": gym.spaces.Box(-1,1,(3,)),
"sensor2": gym.spaces.Box(-1,1,(6,))
})
self.action_space = gym.spaces.Discrete(2)
- 模型封装
class OnnxablePolicy(th.nn.Module):
def __init__(self, policy):
super().__init__()
self.policy = policy
def forward(self, observation):
return self.policy(observation, deterministic=True)
- 数据预处理
# 单环境情况需要添加batch维度
obs = {k: v.reshape(1, -1) for k, v in obs.items()}
# 矢量化环境自动包含batch维度
- ONNX运行时对接
ort_session = ort.InferenceSession("model.onnx")
input_names = [input.name for input in ort_session.get_inputs()]
onnx_inputs = {name: obs[name.split('_')[-1]] for name in input_names}
outputs = ort_session.run(None, onnx_inputs)
关键技术点
- 维度处理:确保所有观测数据统一batch维度
- 输入输出映射:ONNX模型的输入名称会自动转换为
observation_keyname格式 - 版本兼容性:推荐使用PyTorch 2.6+和ONNX Runtime 1.20+
实际应用建议
- 生产环境部署前务必验证ONNX模型与原模型输出的一致性
- 对于连续动作空间,可能需要额外处理动作缩放
- 考虑将后处理步骤(如采样)移至ONNX模型外部
总结
本文详细介绍了在Stable Baselines3中导出复杂观测空间策略网络到ONNX格式的完整流程。通过合理的封装和最新的PyTorch导出API,开发者可以成功将MultiInputPolicy部署到各种推理环境中。需要注意的是,随着PyTorch版本的更新,最佳实践可能相应变化,建议保持对官方文档的关注。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
242
278
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
695
369
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
882