Stable Baselines3中MultiInputPolicy模型的ONNX导出实践指南
2025-05-22 23:24:30作者:范垣楠Rhoda
背景介绍
在强化学习模型部署过程中,将训练好的策略网络导出为ONNX格式是一个常见需求。本文针对Stable Baselines3框架中基于字典观测空间(Dict observation space)的MultiInputActorCriticPolicy模型,详细讲解其ONNX导出方法。
核心挑战
当使用字典类型的观测空间时,传统的ONNX导出方式会遇到几个关键问题:
- PyTorch原生
torch.onnx.export对字典输入支持有限 - 观测数据需要正确处理batch维度
- ONNX运行时输入名称需要与导出模型匹配
解决方案演进
初始尝试方案
早期尝试直接封装策略网络会出现类型不匹配错误:
# 典型错误示例
th.onnx.export(policy, obs_dict, "model.onnx") # 会报"Expected dict, got torch.Tensor"
动态导出方案
使用PyTorch的dynamo_export方法可以部分解决问题:
onnx_program = th.onnx.dynamo_export(onnx_policy, obs_tensor)
但会产生版本兼容性警告,且该方法已被标记为即将弃用。
最终稳定方案
最新PyTorch版本推荐使用带dynamo参数的导出方式:
model_input = {"observation": obs_tensor}
th.onnx.export(
onnx_policy,
args=(model_input,),
f="model.onnx",
dynamo=True
)
完整实现步骤
- 环境准备
class CustomEnv(gym.Env):
def __init__(self):
self.observation_space = gym.spaces.Dict({
"sensor1": gym.spaces.Box(-1,1,(3,)),
"sensor2": gym.spaces.Box(-1,1,(6,))
})
self.action_space = gym.spaces.Discrete(2)
- 模型封装
class OnnxablePolicy(th.nn.Module):
def __init__(self, policy):
super().__init__()
self.policy = policy
def forward(self, observation):
return self.policy(observation, deterministic=True)
- 数据预处理
# 单环境情况需要添加batch维度
obs = {k: v.reshape(1, -1) for k, v in obs.items()}
# 矢量化环境自动包含batch维度
- ONNX运行时对接
ort_session = ort.InferenceSession("model.onnx")
input_names = [input.name for input in ort_session.get_inputs()]
onnx_inputs = {name: obs[name.split('_')[-1]] for name in input_names}
outputs = ort_session.run(None, onnx_inputs)
关键技术点
- 维度处理:确保所有观测数据统一batch维度
- 输入输出映射:ONNX模型的输入名称会自动转换为
observation_keyname格式 - 版本兼容性:推荐使用PyTorch 2.6+和ONNX Runtime 1.20+
实际应用建议
- 生产环境部署前务必验证ONNX模型与原模型输出的一致性
- 对于连续动作空间,可能需要额外处理动作缩放
- 考虑将后处理步骤(如采样)移至ONNX模型外部
总结
本文详细介绍了在Stable Baselines3中导出复杂观测空间策略网络到ONNX格式的完整流程。通过合理的封装和最新的PyTorch导出API,开发者可以成功将MultiInputPolicy部署到各种推理环境中。需要注意的是,随着PyTorch版本的更新,最佳实践可能相应变化,建议保持对官方文档的关注。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
348
413
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
609
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
暂无简介
Dart
778
193
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
React Native鸿蒙化仓库
JavaScript
303
357
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896