Kysely中使用原生SQL进行类型注入的高级技巧
在PostgreSQL ORM工具Kysely中,开发者经常会遇到需要使用原生SQL进行复杂查询的场景。本文将深入探讨如何在使用原生SQL进行JOIN操作时正确注入类型信息,以及如何处理相关的技术挑战。
问题背景
在使用Kysely进行数据库查询时,有时需要动态构建查询条件,特别是当需要将运行时确定的数组值作为JOIN条件时。一个典型场景是使用PostgreSQL的unnest函数将数组展开为行,然后与其他表进行JOIN操作。
基础解决方案
最基本的解决方案是使用Kysely提供的sql模板标签和类型参数来指定返回类型:
.leftJoinLateral(
sql<{model: string}>`unnest(ARRAY[${sql.join(configuredModels)}]::varchar[])`.as<'v'>(
'v(model)' as 'v'
),
(join) => join.onTrue()
)
这种方法虽然可行,但会产生一些技术上的限制。
技术挑战与解决方案
1. 别名解析问题
上述代码生成的SQL会包含带括号的别名"v(model)",这在PostgreSQL中会被视为一个整体标识符,而不是v表的model列。这会导致后续查询中无法使用v.model这样的引用方式。
解决方案:可以考虑使用更简单的别名结构,或者接受这种限制并在查询中统一使用带括号的引用方式。
2. 类型注入的正确方式
开发者尝试封装一个工具函数来简化数组展开操作:
function unnestedArray<T>(value: T): RawBuilder<T> {
if (!Array.isArray(value)) {
throw new TypeError('Value must be an array')
}
return sql`unnest(ARRAY[${sql.join(value)}]::varchar[])`
}
但在使用时遇到了类型错误,因为Kysely的类型系统无法正确推断出返回的结构。
深入分析:这是因为Kysely的类型系统期望unnest操作返回的是一个表结构,而简单的类型参数无法完整表达这种关系。需要更精确地描述返回类型的结构。
3. 类型系统的精确控制
为了获得更好的类型支持,可以更精确地定义返回类型:
.leftJoinLateral(
sql<{model: string}>`unnest(ARRAY[${sql.join(models)}]::varchar[])`.as('models'),
(join) => join.onTrue()
)
.select(['models.model'])
这种方式能够更准确地表达查询的返回结构,让TypeScript能够正确推断出字段类型。
最佳实践建议
- 保持类型简单:尽量使用简单的类型结构,避免过于复杂的嵌套类型
- 明确别名规则:统一别名命名规则,避免特殊字符带来的解析问题
- 逐步构建查询:先构建简单的查询确保类型正确,再逐步添加复杂条件
- 利用类型工具:合理使用TypeScript的类型工具来简化复杂类型的定义
总结
在Kysely中使用原生SQL进行JOIN操作时,类型注入是一个需要特别注意的技术点。通过理解Kysely的类型系统和PostgreSQL的查询执行机制,开发者可以构建出既类型安全又高效的数据库查询。虽然在某些边缘情况下会遇到限制,但通过合理的设计和类型定义,大多数场景都能得到很好的支持。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00