Harvester项目升级控制器对暂停状态管理图表的恢复机制解析
背景介绍
在Harvester项目(一个基于Kubernetes构建的开源超融合基础设施HCI解决方案)的升级过程中,系统会通过管理图表(ManagedCharts)来协调各种组件的升级。这些管理图表在升级过程中会被临时暂停(paused),以确保升级过程的原子性和一致性。然而,在某些异常情况下,特别是当升级过程被中断时,这些图表可能会保持暂停状态,导致系统功能异常。
问题本质
在Harvester v1.5.1版本之前,当升级过程被意外中断(如手动取消升级或升级过程中出现错误)时,系统无法自动恢复那些被暂停的管理图表。这会导致相关功能组件无法正常运行,需要管理员手动干预才能恢复系统完整功能。
技术实现
Harvester团队在v1.5.1版本中实现了升级控制器的增强功能,使其能够在以下情况下自动恢复被暂停的管理图表:
-
正常升级完成时:当升级成功完成所有步骤后,控制器会自动恢复所有被暂停的图表。
-
升级被取消时:如果升级过程被手动取消,控制器会检测并恢复那些仍处于暂停状态的图表。
-
升级失败时:当升级过程中出现错误导致失败时,控制器会尝试恢复图表到正常状态。
实现细节
升级控制器通过以下机制实现这一功能:
-
状态跟踪:控制器会跟踪每个管理图表的暂停状态,记录哪些图表因升级而被暂停。
-
异常处理:在检测到升级过程异常终止时,控制器会遍历所有被它暂停的图表,并将它们的spec.paused字段设置为false。
-
版本兼容性:该功能在不同版本间的行为有所不同:
- v1.4.3及更早版本:无法自动恢复暂停的图表
- v1.5.1版本:当升级被取消且Harvester Pod已升级时,可以恢复图表
- v1.6.0及以上版本:完全支持在各种异常情况下恢复图表
实际应用场景
这一增强功能特别适用于以下场景:
-
升级卡顿时:当升级过程卡在某个步骤(如upgrade_rancher)时,管理员可以安全地取消升级,系统会自动恢复图表状态。
-
资源清理:在升级被取消后,系统会清理相关资源(如repo),此时图表可能会进入错误状态(如"no chart version found"),但至少它们不会被错误地保持在暂停状态。
-
系统恢复:在升级失败后,系统能够更快地恢复到可用状态,减少管理员干预的需要。
注意事项
虽然这一增强提高了系统的健壮性,但用户仍需注意:
-
在v1.4.3升级到v1.5.1的过程中,如果升级在Harvester Pod完成升级前被取消,图表可能仍会保持暂停状态。
-
取消升级可能导致某些图表处于错误状态,特别是当apply_manifest任务被中断时,这通常是由于相关资源(如repo)已被清理而任务仍在运行导致的。
-
对于生产环境,建议在测试环境中验证升级过程,了解特定版本组合下的行为特征。
未来改进方向
Harvester团队正在考虑以下改进:
-
更精细的升级控制:可能引入对apply_manifest任务的更精细控制,使其能够响应升级取消事件。
-
状态一致性保证:探索如何保证即使在升级被取消时,系统资源也能保持一致性。
-
用户界面增强:在UI中更清晰地展示升级中断后的系统状态和需要的恢复操作。
这一改进体现了Harvester项目对系统可靠性和用户体验的持续关注,使得产品在复杂的升级场景下表现更加稳健。
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0162DuiLib_Ultimate
DuiLib_Ultimate是duilib库的增强拓展版,库修复了大量用户在开发使用中反馈的Bug,新增了更加贴近产品开发需求的功能,并持续维护更新。C++03GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。08- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile04
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
- Dd2l-zh《动手学深度学习》:面向中文读者、能运行、可讨论。中英文版被70多个国家的500多所大学用于教学。Python011
热门内容推荐
最新内容推荐
项目优选









