NLog项目中使用GetCurrentClassLogger()的日志输出问题解析
问题背景
在使用NLog日志框架时,开发人员可能会遇到一个常见问题:当从.NET 6升级到.NET 8后,使用LogManager.GetCurrentClassLogger()
方法获取的日志记录器突然无法输出日志。而通过LogManager.GetLogger("特定名称")
方式却能正常工作。
问题本质
这个问题的核心在于NLog的日志路由机制。GetCurrentClassLogger()
方法会通过捕获堆栈跟踪来确定日志记录器的名称,这个名称通常包含类所在的完整命名空间路径。而在NLog配置文件中,<rules>
部分定义了哪些日志记录器名称可以路由到哪些输出目标。
具体原因分析
-
命名空间匹配问题:当使用
GetCurrentClassLogger()
时,生成的日志记录器名称包含完整命名空间路径,而配置文件中只配置了特定名称(如"logdb"、"logfile"等)的路由规则,导致大部分日志记录器找不到匹配的输出目标。 -
.NET版本差异:在.NET 8中,特别是使用最小API时,如果没有明确命名空间,生成的日志记录器名称可能会有所不同,这进一步加剧了路由匹配问题。
-
配置限制:原配置文件中的路由规则过于严格,只允许特定名称的日志记录器输出,而排除了其他所有日志记录器。
解决方案
-
放宽路由规则:将配置文件中的
<rules>
部分修改为通配符形式,允许所有日志记录器输出:<logger name="*" writeTo="log_database,log_json,log_file" />
-
特定类别的路由:如果需要更精细的控制,可以结合通配符和特定名称:
<logger name="SomeNamespace.*" writeTo="log_database" /> <logger name="OtherNamespace.*" writeTo="log_file" /> <logger name="logdb" writeTo="log_database" />
-
日志级别过滤:可以添加日志级别限制,避免输出过多不必要的信息:
<logger name="*" minlevel="Info" writeTo="log_database" />
最佳实践建议
-
明确命名空间路由:为不同功能模块配置不同的日志路由,便于日志分类和管理。
-
利用日志级别:合理设置不同环境下的日志级别,生产环境可以使用较高的日志级别,开发环境可以使用更详细的级别。
-
定期审查日志配置:随着项目发展,定期审查和调整日志配置,确保其仍然符合当前需求。
-
使用内部日志调试:当遇到日志输出问题时,可以启用NLog的内部日志功能帮助诊断:
<nlog internalLogLevel="Debug" internalLogFile="nlog-internal.log">
总结
NLog的日志路由机制非常灵活但也需要正确配置。理解GetCurrentClassLogger()
的工作原理和路由匹配规则,可以帮助开发人员更好地设计日志系统。在升级.NET版本或重构代码时,特别要注意命名空间变化对日志系统的影响,适时调整日志配置以确保日志能够正常输出。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00HunyuanWorld-Mirror
混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Scilit-X1-13B
FLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选









