Lunr.py 使用教程
2024-09-18 13:55:26作者:秋阔奎Evelyn
1. 项目介绍
Lunr.py 是一个 Python 实现的 Lunr.js 项目,由 Oliver Nightingale 开发。Lunr.js 是一个轻量级的全文搜索解决方案,类似于 Solr,但更小巧且功能强大。Lunr.py 旨在将 Lunr.js 的简单而强大的全文搜索功能引入 Python,确保结果与原始实现尽可能接近。
Lunr.py 适用于以下场景:
- 无法部署像 Elasticsearch 这样的全规模解决方案时。
- 在进行原型设计时。
- 需要快速的全文搜索功能。
Lunr.py 通过解析文档并创建倒排索引,实现快速的全文搜索。它特别适用于集成到 Web 应用程序中,例如 MkDocs 文档库。
2. 项目快速启动
安装
首先,使用 pip 安装 Lunr.py:
pip install lunr
使用示例
以下是一个简单的使用示例,展示如何使用 Lunr.py 进行全文搜索:
from lunr import lunr
# 定义文档
documents = [
{
'id': 'a',
'title': 'Mr. Green kills Colonel Mustard',
'body': 'Mr. Green killed Colonel Mustard in the study with the candlestick.'
},
{
'id': 'b',
'title': 'Plumb waters plant',
'body': 'Professor Plumb has a green plant in his study.'
}
]
# 创建索引
idx = lunr(
ref='id',
fields=('title', 'body'),
documents=documents
)
# 搜索
results = idx.search('kill')
print(results)
输出结果:
[{'ref': 'a', 'score': 0.6931722372559913, 'match_data': <MatchData "kill">}]
3. 应用案例和最佳实践
应用案例
Lunr.py 可以集成到 MkDocs 文档库中,提供内置的搜索功能。MkDocs 生成文档页面后,使用 Lunr.js 在前端进行搜索。Lunr.py 可以在后端预先解析文档并创建索引,减少前端启动时间。
最佳实践
- 预处理文档:在应用启动时预处理文档并创建索引,以减少搜索延迟。
- 多语言支持:使用
lunr[languages]
扩展支持多种语言,但需注意 NLTK 语料库的许可条款。 - 索引优化:根据文档大小和搜索需求,优化索引的创建和存储方式。
4. 典型生态项目
MkDocs
MkDocs 是一个用于创建项目文档的静态站点生成器。它使用 Lunr.js 提供内置的搜索功能。通过 Lunr.py,可以在 MkDocs 中实现更高效的全文搜索。
Elasticsearch
虽然 Lunr.py 是一个轻量级的解决方案,但在某些场景下,Elasticsearch 仍然是首选。Lunr.py 可以作为 Elasticsearch 的替代方案,特别是在资源有限或需要快速原型设计时。
其他应用
Lunr.py 还可以用于桌面应用程序或后端服务,提供全文搜索功能,类似于 Elasticsearch 的功能。
通过本教程,您应该能够快速上手 Lunr.py,并将其应用于您的项目中。
热门项目推荐
相关项目推荐
- CangjieCommunity为仓颉编程语言开发者打造活跃、开放、高质量的社区环境Markdown00
- redis-sdk仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。Cangjie032
- 每日精选项目🔥🔥 推荐每日行业内最新、增长最快的项目,快速了解行业最新热门项目动态~ 🔥🔥02
- qwerty-learner为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workersTSX022
- Yi-CoderYi Coder 编程模型,小而强大的编程助手HTML07
- advanced-javaAdvanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。JavaScript085
- taro开放式跨端跨框架解决方案,支持使用 React/Vue/Nerv 等框架来开发微信/京东/百度/支付宝/字节跳动/ QQ 小程序/H5/React Native 等应用。 https://taro.zone/TypeScript09
- CommunityCangjie-TPC(Third Party Components)仓颉编程语言三方库社区资源汇总05
- Bbrew🍺 The missing package manager for macOS (or Linux)Ruby01
- byzer-langByzer(以前的 MLSQL):一种用于数据管道、分析和人工智能的低代码开源编程语言。Scala04
热门内容推荐
最新内容推荐
项目优选
收起
openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
825
0
redis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-es
Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
8
1
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5