LMDeploy项目中随机种子对文本生成结果的影响分析
2025-06-04 08:39:21作者:幸俭卉
问题背景
在LMDeploy项目使用过程中,开发者发现当使用相同的GenerationConfig配置和固定随机种子(random_seed)时,模型生成的第一个响应结果与后续结果存在不一致的情况。这一现象引起了技术团队的关注,因为按照常规理解,在相同随机种子下,模型应该产生完全一致的输出结果。
问题复现与验证
通过以下两种测试场景可以复现该问题:
场景一:固定随机种子
from lmdeploy.messages import GenerationConfig, TurbomindEngineConfig
from lmdeploy import pipeline
engine_config = TurbomindEngineConfig(tp=1)
gen_config = GenerationConfig(random_seed=1, top_k=40, do_sample=True)
pipe = pipeline("/path/to/model", backend_config=engine_config)
res = pipe(["Shanghai is"]*3, gen_config=gen_config)
print(res[0].text) # 第一个结果
print(res[1].text) # 第二个结果
print(res[2].text) # 第三个结果
在这个场景中,理论上三个结果应该完全相同,因为使用了相同的随机种子,但实际观察发现第一个结果与其他两个不同。
场景二:不固定随机种子
gen_config = GenerationConfig(top_k=40, do_sample=True)
# 其余代码与场景一相同
在这个场景中,预期三个结果应该各不相同(因为没有固定随机种子),但实际观察发现第二个和第三个结果相同。
技术分析
经过技术团队深入分析,发现这个问题与请求处理机制有关:
-
请求处理流程差异:列表中的请求可能会在不同的迭代中被转发处理,这导致有较小概率出现结果不一致的情况。
-
随机种子应用时机:第一个请求可能在某些初始化过程中使用了不同的随机状态,而后续请求则保持了稳定的随机状态。
-
并行处理影响:即使设置了TP=1(单卡),底层实现中可能仍存在某些并行处理机制影响了随机种子的应用。
解决方案
技术团队已经通过代码修复解决了这个问题。主要改进点包括:
- 确保随机种子在请求处理流程中的一致性应用
- 优化了请求转发机制,减少不同迭代间的差异
- 加强了随机状态管理,保证可重复性
最佳实践建议
对于需要确定性输出的应用场景,建议:
- 确保使用固定随机种子
- 对于批量请求,考虑逐个处理而非列表式处理
- 在关键应用中进行结果验证
- 更新到最新版本的LMDeploy以获取修复
总结
这个问题揭示了深度学习推理系统中随机性管理的重要性。通过这次修复,LMDeploy项目在确定性输出方面得到了改进,为需要可重复结果的场景提供了更好的支持。开发者在使用类似系统时,应当充分理解随机性对结果的影响,并合理配置相关参数。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
暂无简介
Dart
568
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
280
26