Pinpoint在JBoss 6.3环境下对EJB追踪的支持问题分析
背景介绍
Pinpoint作为一款优秀的应用性能监控工具,在Java应用监控领域有着广泛的应用。然而在实际部署过程中,特别是在一些较老版本的应用服务器环境下,可能会遇到兼容性问题。本文主要讨论Pinpoint在JBoss EAP 6.3环境中对EJB(Enterprise Java Beans)追踪的支持情况。
问题现象
在JBoss 6.3环境中部署Pinpoint agent时,用户遇到了以下典型问题:
- 初始错误:
java.lang.NoClassDefFoundError: javax/servlet/AsyncListener,这个错误发生在尝试加载EJB相关监控功能时 - 虽然应用能够成功注册到Pinpoint,但无法在服务器地图(servermap)中看到任何事务追踪信息
 - 使用Pinpoint 2.5.3版本时出现此问题
 
问题根源分析
这个问题的根本原因在于JBoss 6.3的模块化架构与Pinpoint的EJB追踪功能之间的兼容性问题:
- 
类加载机制冲突:JBoss 6.3使用自己的模块化类加载系统,而Pinpoint的EJB追踪功能需要访问
javax.servlet.AsyncListener类,这个类在JBoss的模块系统中可能不可见 - 
Servlet API版本问题:JBoss 6.3内置的Servlet API版本可能不包含
AsyncListener接口,这是Servlet 3.0规范引入的特性 - 
EJB技术栈的演变:随着微服务架构的兴起,传统的EJB技术栈使用率逐渐降低,Pinpoint后续版本可能减少了对这部分功能的维护
 
解决方案
经过实践验证,有以下几种可行的解决方案:
- 
禁用EJB追踪功能: 在pinpoint配置文件中设置:
profiler.jboss.traceEjb=false这是最简单直接的解决方案,特别是当应用主要使用其他技术栈时
 - 
升级Pinpoint版本: 使用Pinpoint 1.7.0版本的agent配合2.5.3版本的collector,这个组合在测试中表现良好
 - 
补充Servlet API: 尝试将
jboss-servlet-api_3.0_spec-1.0.2.Final-redhat-1.jar添加到启动类路径中:-Xbootclasspath/a:/path/to/jboss-servlet-api_3.0_spec-1.0.2.Final-redhat-1.jar不过需要注意的是,这种方法在某些情况下可能仍然无法解决问题
 
技术建议
对于仍在使用JBoss 6.3等较老应用服务器的用户,建议:
- 
评估应用的实际技术栈,如果EJB不是核心组件,可以安全地禁用EJB追踪功能
 - 
考虑逐步迁移到更新的应用服务器版本,这些版本通常有更好的Pinpoint兼容性
 - 
在混合技术栈环境中,可以优先确保Web层(REST/Servlet)的监控正常工作,这通常能覆盖大部分业务场景
 - 
对于必须监控EJB的场景,可以考虑使用Pinpoint的老版本(如1.7.0)或寻找替代监控方案
 
总结
Pinpoint在较新版本中可能减少了对传统EJB技术栈的支持,这反映了技术演变的趋势。在实际部署时,用户需要根据自身环境特点选择合适的配置方案。对于JBoss 6.3这样的环境,禁用EJB追踪功能或使用老版本Pinpoint agent是经过验证的有效解决方案。随着应用架构向微服务方向演进,这类兼容性问题将逐渐减少。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00