milkymist 的项目扩展与二次开发
2025-06-10 00:40:57作者:钟日瑜
项目的基础介绍
milkymist 是一个开源的视频合成器系统-on-chip (SoC) 设计,它包含了用于Milkymist One视频合成器的核心源代码和文档。该项目提供了在FPGA上实现视频合成和处理功能的完整解决方案,适用于开源硬件和软件开发社区。
项目的核心功能
milkymist SoC 的核心功能包括:
- LM32处理器核心
- DDR SDRAM内存管理
- 2D纹理映射单元(TMU)
- 可编程浮点单元(PFPU)
- USB接口支持
- MIDI接口支持
- 视频输出和合成功能
项目使用了哪些框架或库?
milkymist 项目使用了以下框架或库:
- Mico32软处理器核心(由Lattice Semiconductor提供)
- wb_conbus(由Johny Chi和Rudolf Usselmann提供,进行了修改)
- SoftFloat IEC/IEEE浮点运算包(由John R. Hauser编写)
此外,项目开发过程中使用了多种开源工具和库,如GNU Make、Bourne Again Shell (bash)、Icarus Verilog、GPL Cver、Verilator等。
项目的代码目录及介绍
项目的代码目录结构如下:
/cores/
:包含核心库的Verilog源代码、测试平台和文档。/boards/
:顶层设计文件、约束文件和胶合逻辑。/software/
:为SoC提供的基本软件:库和BIOS。/softusb-input/
:实现软USB核心输入设备支持的AVR固件。/doc/
:系统文档。/tools/
:开发者使用的小型工具。
对项目进行扩展或者二次开发的方向
- 性能优化:对现有的视频处理算法进行优化,提高合成器的处理速度和图像质量。
- 功能扩展:增加新的视频效果和图像处理功能,以满足更多创意需求。
- 硬件兼容性:扩大对不同FPGA和硬件平台的兼容性,使得milkymist SoC能够应用于更多场景。
- 软件生态:构建和完善软件开发工具链,为开发者提供更便捷的开发和调试环境。
- 社区支持:建立更活跃的社区,提供文档、教程和示例代码,以促进项目的发展和普及。
通过以上扩展和二次开发,milkymist 项目将能够更好地服务于开源硬件和软件开发社区,激发更多创意和创新。
登录后查看全文
热门项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00HunyuanWorld-Mirror
混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Scilit-X1-13B
FLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析2 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp Cafe Menu项目中link元素的void特性解析5 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 6 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析7 freeCodeCamp全栈开发课程中React实验项目的分类修正8 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析9 freeCodeCamp博客页面工作坊中的断言方法优化建议10 freeCodeCamp论坛排行榜项目中的错误日志规范要求
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
236
2.35 K

仓颉编译器源码及 cjdb 调试工具。
C++
114
81

暂无简介
Dart
538
117

React Native鸿蒙化仓库
JavaScript
216
291

Ascend Extension for PyTorch
Python
77
106

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
994
588

仓颉编程语言测试用例。
Cangjie
34
65

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
131
655