lm-evaluation-harness评估结果与Open LLM Leaderboard差异解析
在评估大型语言模型性能时,研究人员经常使用lm-evaluation-harness工具包进行本地测试,但有时会发现本地评估结果与Open LLM Leaderboard公布的分数存在显著差异。本文将深入分析这种差异产生的原因,并提供正确的评估方法。
评估结果差异的核心原因
本地使用lm-evaluation-harness评估时,默认输出的是原始分数(raw score),而Open LLM Leaderboard第二版默认显示的是经过标准化处理后的分数(normalized score)。这是造成表面差异的主要原因。
标准化处理是Open LLM Leaderboard第二版引入的新特性,目的是使不同测试集之间的分数更具可比性。标准化过程会参考基线模型(如GPT-4)的表现,将原始分数转换为相对值。
正确比较评估结果的方法
当需要将本地评估结果与Open LLM Leaderboard进行对比时,应该:
- 在本地评估时使用
leaderboard_gpqa等特定任务名称,这些任务与Leaderboard的测试集对应 - 将本地结果与Leaderboard上的"raw score"而非默认显示的标准分进行比较
- 注意评估参数的设置,包括batch size、硬件环境等都可能影响最终结果
评估中的其他注意事项
除了分数类型的差异外,评估过程中还需注意以下因素:
-
评估版本一致性:不同版本的lm-evaluation-harness可能产生不同结果,特别是对于Leaderboard第一版的复现,需要使用特定commit版本的评估工具
-
评估稳定性:某些测试集(如HellaSwag)在小样本评估时(
--limit参数值较小)结果波动较大,建议使用完整测试集进行评估 -
模型加载配置:确保本地评估时的模型配置(如数据类型dtype)与预期一致,这会影响模型性能表现
-
评估任务选择:不同子任务(gpqa_main/gpqa_extended等)的难度和评分标准不同,需要明确比较的是哪个具体任务
实际评估案例解析
以Phi-3-mini-4k模型为例,本地评估得到的gpqa准确率约为32.97%,这与Leaderboard上该模型的gpqa raw score接近,但与标准化后显示的9.28%有显著差异。这种差异正是由于评分标准不同造成的,而非评估方法错误。
同样现象也出现在Qwen2-7B等模型上,本地评估结果与官方报告接近,但与Leaderboard标准化分数存在差距。这进一步验证了比较raw score的重要性。
结论
正确理解和使用评估工具对于LLM性能评估至关重要。研究人员应当:
- 明确区分原始分数和标准化分数
- 确保评估环境和参数设置的一致性
- 关注具体任务而非仅看综合得分
- 对于有疑问的结果,可以交叉验证不同评估方式
通过遵循这些原则,可以更准确地评估模型性能,并有效比较不同来源的评估结果。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00