Seurat项目中HTO低表达样本的过滤处理方法
2025-07-02 07:01:06作者:郦嵘贵Just
背景介绍
在单细胞RNA测序数据分析中,使用Hashtag Oligonucleotides (HTO)技术进行样本多路复用(multiplexing)是一种常见的实验设计。Seurat作为单细胞分析的主流工具,提供了完整的HTO数据分析流程。然而在实际分析过程中,经常会遇到某些HTO标记表达量极低的情况,这会导致后续分析出现"Cells with zero counts exist as a cluster"等错误。
问题分析
当某个HTO标记仅被极少数细胞(如6个细胞)检测到时,这种低表达情况会干扰Seurat的HTODemux函数正常运行。主要原因包括:
- 统计学显著性不足:过少的阳性细胞无法形成可靠的聚类
- 技术噪音干扰:低表达HTO可能来源于实验污染或非特异性结合
- 算法限制:默认参数假设每个HTO都有足够数量的阳性细胞
解决方案
方法一:直接过滤低表达HTO
最直接的解决方案是移除表达量过低的HTO标记。具体实现步骤如下:
- 检查HTO表达矩阵:
rowSums(Seurat.object[["HTO"]]$counts)
- 识别并移除低表达HTO行:
hto_matrix <- Seurat.object@assays$HTO$counts
hto_matrix <- hto_matrix[-which(rowSums(hto_matrix) < threshold), ] # threshold根据实际情况设定
- 创建新的HTO分析对象:
hto_assay_new <- CreateAssayObject(counts = hto_matrix)
Seurat.object[['HTO_new']] <- hto_assay_new
方法二:调整HTODemux参数
对于轻微的低表达情况,可以尝试调整HTODemux的参数:
Seurat.object_demulti <- HTODemux(
Seurat.object,
assay = "HTO",
positive.quantile = 0.99, # 可尝试调低此值
nstarts = 100 # 增加聚类尝试次数
)
方法三:预处理过滤
在HTO分析前进行严格的质控:
# 移除无HTO信号的细胞
Seurat.object <- subset(Seurat.object, subset = nCount_HTO > 0)
# 可选:移除HTO总数过低的细胞
Seurat.object <- subset(Seurat.object, subset = nCount_HTO > quantile(Seurat.object$nCount_HTO, 0.01))
最佳实践建议
-
实验设计阶段:确保每个样本有足够的细胞数量,一般建议每个HTO至少有100-200个细胞
-
数据分析阶段:
- 先可视化HTO表达分布(使用RidgePlot或VlnPlot)
- 对明显异常的HTO进行过滤
- 记录过滤的HTO信息以备后续分析
-
结果验证:
- 检查demux后各样本的细胞数量分布
- 与实验预期进行比对
- 必要时进行人工复核
技术要点总结
处理HTO低表达问题的核心在于理解Seurat的HTODemux算法原理。该函数基于k-medoids聚类,要求每个HTO有足够数量的阳性细胞形成稳定的聚类中心。当某个HTO阳性细胞过少时,会导致聚类失败,从而产生错误提示。通过预处理过滤或参数调整,可以解决这类问题,但需要谨慎操作以避免引入分析偏差。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
533
3.75 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
772
191
Ascend Extension for PyTorch
Python
342
405
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178