开源项目recipe-scrapers解析:Joy the Baker食谱爬虫实现
在开源项目recipe-scrapers中,开发者a1831319近期完成了一个重要功能增强——为知名美食博客Joy the Baker实现了专门的食谱抓取器。这个功能扩展使得该项目能够自动解析该网站上的食谱内容,为美食数据采集提供了新的工具支持。
技术实现要点
Joy the Baker网站采用典型的博客式食谱展示结构,其页面包含几个关键特征:
- 食谱标题位于文章主标题位置
- 配料表通常以清晰的列表形式呈现
- 制作步骤分段明确
- 包含特色图片和作者说明
针对这种结构,实现方案需要考虑以下技术细节:
-
HTML结构解析:需要准确识别页面中的食谱结构化数据,包括标题、配料和步骤等核心元素的位置。
-
元数据处理:提取食谱的发布时间、作者信息等附加数据。
-
异常处理:应对网站可能的布局变化,确保爬虫的健壮性。
测试用例分析
开发者提供了三个典型测试用例,涵盖了不同风格的食谱页面:
-
经典食谱案例:展示了包含完整配料表和详细步骤的传统食谱页面。
-
季节性菜单:测试了包含特殊分类和标签的食谱页面。
-
一锅料理:验证了特殊烹饪方法的食谱解析能力。
这些测试用例全面覆盖了网站可能出现的各种页面结构,确保了实现的可靠性。
项目意义
这个功能的加入为recipe-scrapers项目带来了以下价值:
-
扩展数据源:新增了一个高质量的美食数据来源。
-
社区贡献:展示了开源社区如何协作完善工具功能。
-
技术验证:为处理类似结构的食谱网站提供了参考实现。
对于需要使用食谱数据的开发者而言,这个更新意味着可以更方便地获取Joy the Baker上的专业食谱内容,用于各种美食应用开发、数据分析或个性化推荐系统。
实现建议
对于想要基于此实现类似功能的开发者,建议关注:
-
使用现代HTML解析库如BeautifulSoup或lxml处理网页结构。
-
实现适当的缓存机制,避免频繁请求目标网站。
-
考虑添加用户代理轮换等反爬策略应对措施。
这个功能的实现展示了recipe-scrapers项目的持续进化,也体现了开源社区通过协作解决实际问题的能力。对于美食数据领域的技术人员来说,这无疑是一个值得关注的有用工具。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00