Qdrant在Linux系统下的编译与安装指南
2025-05-09 00:04:45作者:袁立春Spencer
前言
Qdrant是一款高性能的向量搜索引擎,采用Rust语言编写。本文将详细介绍如何在Linux系统下完成Qdrant的编译和安装过程,特别针对不使用Docker容器的场景。
环境准备
在开始安装Qdrant之前,需要确保系统满足以下依赖条件:
- GLIBC 2.39 - GNU C库
- GLIBCXX 3.4.30 - 对应gcc-12.4.0版本
- CXXABI 1.3.13 - C++应用二进制接口
依赖检查方法
可以通过以下命令检查当前系统是否满足要求:
ldd --version | grep -i glibc
gcc --version
GLIBC安装与配置
下载与解压
从官方渠道获取glibc-2.39源码包并解压:
tar -xzvf glibc-2.39.tar.gz -C /opt/glibc/
依赖检查
在编译前需要确认以下工具已安装且版本符合要求:
- make 4.0+
- gdb 7.8+
- python 3.4+
- binutils 2.26+
- texinfo 4.7+
- bison 2.7+
- sed 3.02+
- gettext 0.10.36+
编译安装
- 创建独立的编译目录:
mkdir /opt/glibc/glibc-2.39-build
- 配置编译参数:
cd /opt/glibc/glibc-2.39-build
../glibc-2.39-src/configure --prefix=/opt/ld-cpl \
--disable-profile \
--enable-add-ons \
--with-headers=/usr/include \
--with-binutils=/usr/bin \
--disable-sanity-checks \
--disable-werror
- 执行编译:
make -j$(nproc)
make install
GCC安装与配置
下载与解压
获取gcc-12.4.0源码包并解压:
tar -xzvf gcc-12.4.0.tar.gz -C /opt/glibc/
依赖检查
确保以下库已安装:
- GMP 4.3.2+
- MPFR 3.1.0+
- MPC 1.0.1+
编译安装
- 创建编译目录:
mkdir /opt/glibc/gcc-12.4.0-build
- 配置编译参数:
cd /opt/glibc/gcc-12.4.0-build
../gcc-12.4.0-src/configure --prefix=/opt/ld-cpl --disable-multilib
- 执行编译:
make -j$(nproc)
make install
Qdrant安装步骤
获取二进制文件
下载Qdrant的Linux版本二进制包并解压:
tar -xzvf qdrant-x86_64-unknown-linux-gnu.tar.gz
chmod +x qdrant
配置动态链接库
使用patchelf工具配置正确的库路径:
patchelf --set-interpreter /opt/ld-cpl/lib/ld-linux-x86-64.so.2 ./qdrant
patchelf --set-rpath /opt/ld-cpl/lib64 ./qdrant
创建配置文件
新建配置文件config.yaml,包含以下基本配置:
log_level: INFO
storage:
storage_path: ./storage
snapshots_path: ./snapshots
service:
host: 0.0.0.0
http_port: 6333
grpc_port: 6334
enable_cors: true
启动Qdrant服务
使用nohup后台运行:
nohup ./qdrant --config-path=./config.yaml > qdrant.log 2>&1 &
验证安装
通过以下方式验证服务是否正常运行:
curl http://localhost:6333/readyz
预期应返回"OK"响应。
常见问题解决
- GLIBC版本冲突:确保已正确设置动态链接器路径
- 内存不足:编译时减少并行任务数(-j参数)
- 端口冲突:检查6333和6334端口是否被占用
性能优化建议
- 根据服务器CPU核心数调整make的-j参数
- 生产环境建议配置TLS加密
- 大数据量场景下适当调整存储路径配置
结语
通过本文的详细步骤,您应该已经成功在Linux系统上完成了Qdrant的编译和安装。Qdrant作为一款高性能向量搜索引擎,能够为您的应用提供强大的相似性搜索能力。如需进一步了解Qdrant的高级功能,建议查阅官方文档。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
188
206
暂无简介
Dart
630
143
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
243
316
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
383
3.64 K
openGauss kernel ~ openGauss is an open source relational database management system
C++
158
210
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
295
105
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
649
267
仓颉编译器源码及 cjdb 调试工具。
C++
128
858