Qdrant在Linux系统下的编译与安装指南
2025-05-09 23:17:02作者:袁立春Spencer
前言
Qdrant是一款高性能的向量搜索引擎,采用Rust语言编写。本文将详细介绍如何在Linux系统下完成Qdrant的编译和安装过程,特别针对不使用Docker容器的场景。
环境准备
在开始安装Qdrant之前,需要确保系统满足以下依赖条件:
- GLIBC 2.39 - GNU C库
- GLIBCXX 3.4.30 - 对应gcc-12.4.0版本
- CXXABI 1.3.13 - C++应用二进制接口
依赖检查方法
可以通过以下命令检查当前系统是否满足要求:
ldd --version | grep -i glibc
gcc --version
GLIBC安装与配置
下载与解压
从官方渠道获取glibc-2.39源码包并解压:
tar -xzvf glibc-2.39.tar.gz -C /opt/glibc/
依赖检查
在编译前需要确认以下工具已安装且版本符合要求:
- make 4.0+
- gdb 7.8+
- python 3.4+
- binutils 2.26+
- texinfo 4.7+
- bison 2.7+
- sed 3.02+
- gettext 0.10.36+
编译安装
- 创建独立的编译目录:
mkdir /opt/glibc/glibc-2.39-build
- 配置编译参数:
cd /opt/glibc/glibc-2.39-build
../glibc-2.39-src/configure --prefix=/opt/ld-cpl \
--disable-profile \
--enable-add-ons \
--with-headers=/usr/include \
--with-binutils=/usr/bin \
--disable-sanity-checks \
--disable-werror
- 执行编译:
make -j$(nproc)
make install
GCC安装与配置
下载与解压
获取gcc-12.4.0源码包并解压:
tar -xzvf gcc-12.4.0.tar.gz -C /opt/glibc/
依赖检查
确保以下库已安装:
- GMP 4.3.2+
- MPFR 3.1.0+
- MPC 1.0.1+
编译安装
- 创建编译目录:
mkdir /opt/glibc/gcc-12.4.0-build
- 配置编译参数:
cd /opt/glibc/gcc-12.4.0-build
../gcc-12.4.0-src/configure --prefix=/opt/ld-cpl --disable-multilib
- 执行编译:
make -j$(nproc)
make install
Qdrant安装步骤
获取二进制文件
下载Qdrant的Linux版本二进制包并解压:
tar -xzvf qdrant-x86_64-unknown-linux-gnu.tar.gz
chmod +x qdrant
配置动态链接库
使用patchelf工具配置正确的库路径:
patchelf --set-interpreter /opt/ld-cpl/lib/ld-linux-x86-64.so.2 ./qdrant
patchelf --set-rpath /opt/ld-cpl/lib64 ./qdrant
创建配置文件
新建配置文件config.yaml,包含以下基本配置:
log_level: INFO
storage:
storage_path: ./storage
snapshots_path: ./snapshots
service:
host: 0.0.0.0
http_port: 6333
grpc_port: 6334
enable_cors: true
启动Qdrant服务
使用nohup后台运行:
nohup ./qdrant --config-path=./config.yaml > qdrant.log 2>&1 &
验证安装
通过以下方式验证服务是否正常运行:
curl http://localhost:6333/readyz
预期应返回"OK"响应。
常见问题解决
- GLIBC版本冲突:确保已正确设置动态链接器路径
- 内存不足:编译时减少并行任务数(-j参数)
- 端口冲突:检查6333和6334端口是否被占用
性能优化建议
- 根据服务器CPU核心数调整make的-j参数
- 生产环境建议配置TLS加密
- 大数据量场景下适当调整存储路径配置
结语
通过本文的详细步骤,您应该已经成功在Linux系统上完成了Qdrant的编译和安装。Qdrant作为一款高性能向量搜索引擎,能够为您的应用提供强大的相似性搜索能力。如需进一步了解Qdrant的高级功能,建议查阅官方文档。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
暂无简介
Dart
568
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
283
26