MNN 的安装和配置教程
2025-05-06 22:48:56作者:管翌锬
1. 项目的基础介绍和主要的编程语言
MNN(Mobile Neural Network)是一个高效、轻量级的深度学习推理引擎,旨在为移动设备提供高性能的神经网络计算能力。它由阿里巴巴集团开发,并开源于GitHub。MNN支持多种神经网络模型格式,如ONNX、CAFFE等,并且可以快速部署到Android和iOS平台上。该项目主要使用C++编程语言开发,同时也涉及了一些Python和Shell脚本来辅助构建和测试。
2. 项目使用的关键技术和框架
MNN使用了许多关键技术和框架,包括但不限于:
- 神经网络推理:MNN提供了高效的神经网络推理能力,能够在移动设备上快速执行深度学习模型。
- 模型优化:MNN能够对模型进行优化,减少模型大小并提升执行效率。
- 多平台支持:MNN能够跨平台部署,支持Android、iOS等移动操作系统。
- 多种模型格式支持:MNN支持多种流行的神经网络模型格式,方便用户将不同的模型转换并部署到移动设备上。
3. 项目安装和配置的准备工作和详细的安装步骤
准备工作
在安装MNN之前,请确保您的开发环境满足以下要求:
- 操作系统:Linux或macOS
- CMake:版本3.3.2或更高
- 编译器:GCC 4.9或更高,或者Clang 3.9或更高
- 依赖库:OpenBLAS、Eigen、OpenGL或Vulkan
安装步骤
以下是在Linux环境下安装MNN的详细步骤:
-
克隆项目仓库:
git clone https://github.com/alibaba/MNN.git cd MNN
-
编译依赖库(如果未预装):
# 安装OpenBLAS wget https://github.com/xianyi/OpenBLAS/releases/download/v0.3.7/OpenBLAS-0.3.7.tar.gz tar -zxf OpenBLAS-0.3.7.tar.gz cd OpenBLAS-0.3.7 make sudo make install # 安装Eigen sudo apt-get install libeigen3-dev
-
创建构建目录并编译MNN:
mkdir build && cd build cmake .. make
-
(可选)如果需要编译示例程序或测试,请执行以下命令:
cd .. ./build/tests
完成以上步骤后,MNN库应该已经编译完成,并可用于您的项目中。
请确保按照上述步骤进行操作,如果遇到任何问题,可以查阅MNN官方文档或向社区寻求帮助。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~052CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0335- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp计算机基础测验题目优化分析2 freeCodeCamp 课程中反馈文本问题的分析与修复3 freeCodeCamp课程中JavaScript变量提升机制的修正说明4 freeCodeCamp 前端开发实验室:排列生成器代码规范优化5 freeCodeCamp课程中"构建电子邮件掩码器"项目文档优化建议6 freeCodeCamp Cafe Menu项目中的HTML void元素解析7 freeCodeCamp全栈开发课程中Navbar组件构建的优化建议8 freeCodeCamp 优化测验提交确认弹窗的用户体验9 freeCodeCamp平台证书查看功能异常的技术分析10 freeCodeCamp全栈开发课程中回文检测器项目的正则表达式教学优化
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
179
263

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
869
514

openGauss kernel ~ openGauss is an open source relational database management system
C++
130
183

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
295
331

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
333
1.09 K

harmony-utils 一款功能丰富且极易上手的HarmonyOS工具库,借助众多实用工具类,致力于助力开发者迅速构建鸿蒙应用。其封装的工具涵盖了APP、设备、屏幕、授权、通知、线程间通信、弹框、吐司、生物认证、用户首选项、拍照、相册、扫码、文件、日志,异常捕获、字符、字符串、数字、集合、日期、随机、base64、加密、解密、JSON等一系列的功能和操作,能够满足各种不同的开发需求。
ArkTS
18
0

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0

deepin linux kernel
C
22
5

微信开发 Java SDK,支持微信支付、开放平台、公众号、视频号、企业微信、小程序等的后端开发,记得关注公众号及时接受版本更新信息,以及加入微信群进行深入讨论
Java
829
22

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
601
58