CrystalFormer 开源项目最佳实践教程
2025-05-20 15:06:50作者:温艾琴Wonderful
1. 项目介绍
CrystalFormer 是一个基于 Transformer 的自回归模型,专门设计用于空间群控制的晶体材料生成。该模型利用空间群对称性显著简化了晶体空间,这对于数据高效和计算高效的晶体材料生成模型至关重要。CrystalFormer 可以根据给定的空间群生成晶体结构,为材料设计和发现提供了强大的工具。
2. 项目快速启动
环境搭建
首先,需要创建一个新的 Python 环境,并安装所需的依赖包。推荐使用 Python 3.10 版本和 conda 管理环境:
conda create -n crystalgpt python=3.10
conda activate crystalgpt
安装 jax 和 jaxlib:
# CPU 版本安装
pip install -U "jax[cpu]"
# GPU 版本安装(需要检查 CUDA 版本)
pip install -U "jax[cuda12]"
然后安装项目所需的其他包:
pip install -r requirements.txt
训练模型
使用以下命令开始训练模型:
python ./main.py --folder ./data/ --train_path YOUR_PATH/mp_20/train.csv --valid_path YOUR_PATH/mp_20/val.csv
其中:
--folder指定保存模型和日志的文件夹--train_path指定训练数据集的路径--valid_path指定验证数据集的路径
生成样本
训练完成后,可以使用以下命令生成样本:
python ./main.py --optimizer none --test_path YOUR_PATH/mp_20/test.csv --restore_path YOUR_MODEL_PATH --spacegroup 160 --num_samples 1000 --batchsize 1000 --temperature 1.0
其中:
--optimizer设置为none表示不进行训练,只进行采样--test_path指定测试数据集的路径--restore_path指定模型权重的路径--spacegroup指定采样空间群的编号--num_samples指定生成的样本数量--batchsize指定采样时的批次大小--temperature指定采样时的温度
3. 应用案例和最佳实践
生成稳定的晶体结构
利用 CrystalFormer,可以生成给定结构原型的稳定晶体。这一工作流程可以应用于元素替代主导的任务。
强化学习微调
通过强化学习微调,可以进一步优化材料设计,提高生成结构的稳定性和性能。
使用 GUI Notebook
使用 CrystalFormer 提供的 GUI Notebook 可以快速开始晶体材料的条件生成。该 Notebook 在 Google Colab 和 Bohrium 平台上提供。
4. 典型生态项目
- SMACT:用于计算材料属性的 Python 包。
- matminer:一个包含多种材料属性和特征提取工具的库。
- matbench-genmetrics:用于生成材料性能度量的工具。
通过这些生态项目,可以进一步分析和评估 CrystalFormer 生成的晶体结构的性能和有效性。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 开源电子设计自动化利器:KiCad EDA全方位使用指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Python案例资源下载 - 从入门到精通的完整项目代码合集 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217