SpeechMOS: 预测语音质量的开源工具箱
2024-08-17 14:16:27作者:温玫谨Lighthearted
项目介绍
SpeechMOS 是一个用于评估音频质量的Python库,特别是针对语音信号。它包含了AECMOS、DNSMOS 和 PLCMOS模型,这些模型专门设计用于分析和评价因回声、噪音、包丢失等引起的音频退化情况。项目基于MIT许可协议,要求Python环境在3.7及以上版本,依赖于librosa, numpy, onnxruntime, 和 pandas等库。此外,通过集成PyTorch模型,SpeechMOS使开发者能够仅用几行代码预测主观的语音评分。
项目快速启动
安装SpeechMOS
首先,确保你的环境中已安装了必要的依赖项。然后,通过pip安装SpeechMOS:
pip install speechmos
使用示例
以下是如何使用SpeechMOS来预测一个音频文件的MOS(平均意见得分)的简单例子:
import librosa
from speechmos import dnsmos
# 加载音频数据
audio, sr = librosa.load('path_to_your_audio.wav', sr=16000)
# 运行DNSMOS模型评估
result = dnsmos.run(audio, sr=sr)
print(result) # 输出将会包含多个维度的MOS评分
应用案例和最佳实践
自然度评估: 对于希望评估音频自然度的应用场景,例如语音合成系统(TTS),可以采用如下流程:
- 加载模型: 使用SpeechMOS提供的模型预测器。
- 处理音频: 将音频数据准备到适合模型输入的格式。
- 预测MOS: 调用相应的方法得到预测的MOS值。
- 结果分析: 分析MOS值以优化系统性能。
import torch
from tarepan.SpeechMOS import predictor
predictor = torch.hub.load("tarepan/SpeechMOS:v1.2.0", "utmos22_strong", trust_repo=True)
wave, sr = librosa.load("example_audio.wav")
score = predictor(torch.from_numpy(wave).unsqueeze(0), sr)
print(f"Predicted MOS: {score}")
典型生态项目
SpeechMOS不仅仅是一个独立的工具,它在整个语音技术生态系统中扮演着重要角色,尤其是在以下几个方面:
- 语音识别系统: 用于音频预处理质量监控。
- 语音合成(TTS): 评价合成语音的质量。
- 实时通信应用: 实时评估通话质量,改善用户体验。
- 音频修复与增强: 开发者可以利用MOS预测作为反馈循环的一部分,优化其噪声消除或回声消除算法。
通过将SpeechMOS融入这些生态系统项目,开发团队可以获得一种标准的、客观的评价指标,帮助他们迭代改进产品,确保提供高质量的语音体验给用户。
以上就是关于SpeechMOS的基本介绍、快速启动指南、应用案例及其在更广泛技术生态中的作用。这个工具通过简化语音质量评估过程,大大提升了语音相关技术的研发效率和成果质量。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
198
81
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
715
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
846
426
Ascend Extension for PyTorch
Python
275
311
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
694