LyCORIS项目中DORA权重分解的GPU计算问题解析
2025-07-02 13:39:22作者:冯爽妲Honey
LyCORIS
Lora beYond Conventional methods, Other Rank adaptation Implementations for Stable diffusion.
问题背景
在LyCORIS项目中使用DORA(Decomposed Rank Adaptation)进行模型训练时,开发者遇到了一个关于设备不匹配的技术问题。当启用dora_wd参数时,系统会报错"Expected all tensors to be on the same device",提示存在CUDA和CPU设备混合使用的情况。
问题现象
具体表现为在apply_weight_decompose函数执行过程中,权重张量(weight)与dora_scale参数不在同一设备上。错误信息明确指出检测到了cuda:0和cpu两种设备同时存在,导致计算无法进行。
技术分析
通过代码调试发现,核心问题出在权重分解的计算过程中:
- 权重张量weight通常位于GPU(cuda:0)上
- 而dora_scale参数却位于CPU上
- 当执行element-wise乘法时,系统检测到设备不匹配
在locon.py文件的apply_weight_decompose函数中,原始实现直接使用了weight和self.dora_scale进行计算,没有确保两者位于同一设备。
解决方案演进
项目维护者在2.2.0.dev7版本中首次解决了这个问题,但后续版本(2.2.0.dev8之后)又出现了回归。社区贡献者提出了临时解决方案:
- 在make_weight函数中添加设备检查逻辑
- 当检测到dora_scale与权重张量不在同一设备时,主动将dora_scale转移到权重所在的设备
if self.wd and self.dora_scale.device != weight.device:
self.dora_scale = self.dora_scale.to(weight.device)
最佳实践建议
对于使用LyCORIS进行DORA训练的用户,建议:
- 确保使用最新稳定版本(2.2.0及以上)
- 避免在低显存模式(--lowvram)下使用DORA功能
- 如果遇到设备不匹配错误,可临时检查并同步相关参数的设备位置
- 关注项目更新,及时获取官方修复
技术原理深入
DORA(Decomposed Rank Adaptation)是一种权重分解技术,通过对权重矩阵进行规范化处理来提高模型训练的稳定性和效率。在实现过程中,需要特别注意:
- 张量设备一致性:所有参与计算的张量必须位于同一设备
- 计算图完整性:自动微分需要完整的设备上下文
- 性能考量:频繁的设备间数据传输会影响训练速度
这些问题在分布式训练和混合精度训练场景下尤为突出,需要框架层面的统一管理。
总结
LyCORIS项目中的DORA功能为模型训练提供了有价值的改进,但在实现细节上仍需注意设备一致性等基础问题。通过社区协作和版本迭代,这类技术问题能够得到有效解决,为用户提供更稳定的训练体验。
LyCORIS
Lora beYond Conventional methods, Other Rank adaptation Implementations for Stable diffusion.
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
deepin linux kernel
C
24
7
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
306
2.7 K
仓颉编译器源码及 cjdb 调试工具。
C++
123
752
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
598
132
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
460
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
616
Ascend Extension for PyTorch
Python
140
170
仓颉编程语言命令行工具,包括仓颉包管理工具、仓颉格式化工具、仓颉多语言桥接工具及仓颉语言服务。
C++
55
730
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
634
232