Apache Kyuubi项目中PyHive与setuptools 72.0.0的兼容性问题分析
问题背景
在Apache Kyuubi项目的Python客户端依赖中,PyHive作为重要的Hive连接库,近期被发现与最新版本的setuptools存在兼容性问题。具体表现为当用户环境中的setuptools升级到72.0.0版本后,PyHive的安装过程会失败。
问题根源
这个问题的本质在于PyHive仍然依赖setuptools中已被废弃的test命令模块。setuptools在72.0.0版本中移除了这个长期被标记为废弃的功能,这是Python打包生态系统现代化进程的一部分。PyHive的setup.py文件中引用了setuptools.command.test模块,导致在新的setuptools版本下无法正常构建。
技术细节
setuptools作为Python生态中最重要的打包工具之一,其72.0.0版本移除了多个已废弃的功能,其中就包括传统的测试命令实现。这个变更影响了大量仍在使用旧式测试命令的Python包。
在PyHive的具体实现中,项目可能继承了setuptools的TestCommand来定义自定义测试流程,或者直接引用了该模块。当setuptools 72.0.0不再提供这个模块时,Python的导入机制就会抛出ModuleNotFoundError,导致包安装过程失败。
影响范围
这个问题会影响所有使用PyHive且setuptools版本≥72.0.0的环境。值得注意的是,PyHive实际上已经不再使用这个测试命令功能,这意味着移除相关依赖不会影响实际功能。
解决方案
解决这个问题有两种主要途径:
-
降级setuptools:临时将setuptools降级到71.x或更早版本
pip install "setuptools<72.0.0" -
修复PyHive:更彻底的解决方案是更新PyHive的构建配置,移除对废弃test命令的依赖。这需要修改setup.py文件,删除相关导入和使用。
最佳实践建议
对于依赖PyHive的项目,建议采取以下措施:
- 在项目文档中明确setuptools版本要求
- 考虑在CI/CD流程中固定setuptools版本
- 推动PyHive上游修复这个问题
总结
这个案例展示了Python生态系统中依赖管理的重要性。随着核心工具的不断演进,项目需要定期更新构建配置以适应这些变化。对于Apache Kyuubi这样的项目来说,保持依赖的现代性和兼容性是确保用户体验的关键因素。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0114
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00