Torch Optim 项目启动与配置教程
2025-05-26 11:17:10作者:凤尚柏Louis
1. 项目的目录结构及介绍
Torch Optim 是一个为 Torch 提供数值优化算法的包。以下是项目的目录结构及其简单介绍:
torch/optim/
├── doc/ # 项目文档
├── test/ # 测试文件
├── .gitignore # 指定 Git 忽略的文件
├── CMakeLists.txt # CMake 配置文件
├── COPYRIGHT.txt # 版权信息
├── ConfusionMatrix.lua # 混淆矩阵相关代码
├── Logger.lua # 日志记录器
├── adadelta.lua # Adadelta 优化算法
├── adagrad.lua # Adagrad 优化算法
├── adam.lua # Adam 优化算法
├── adamax.lua # Adamax 优化算法
├── asgd.lua # ASGD 优化算法
├── cg.lua # Conjugate Gradient 优化算法
├── checkgrad.lua # 检查梯度函数
├── cmaes.lua # CMA-ES 优化算法
├── de.lua # 差分进化算法
├── fista.lua # FISTA 优化算法
├── init.lua # 初始化文件
├── lbfgs.lua # L-BFGS 优化算法
├── lswolfe.lua # Line Search 优化算法
├── mkdocs.yml # MkDocs 配置文件
├── nag.lua # Nesterov 加速梯度下降算法
├── optim-1.0.3-0.rockspec
├── optim-1.0.3-1.rockspec
├── optim-1.0.4-0.rockspec
├── optim-1.0.5-0.rockspec
├── polyinterp.lua # 多项式插值
├── rmsprop.lua # RMSprop 优化算法
├── rprop.lua # Rprop 优化算法
├── sgd.lua # 随机梯度下降算法
├── ... # 其他文件和目录
在这个结构中,主要的优化算法文件(如 adadelta.lua, adam.lua 等)包含了具体的优化算法实现。test/ 目录包含了测试这些算法的代码。doc/ 目录包含了项目的文档。
2. 项目的启动文件介绍
在 Torch Optim 项目中,并没有一个单一的启动文件。通常,用户会直接在 Lua 脚本中 require 需要的优化算法模块。例如,如果你需要使用 Adadelta 算法,你可以在你的 Lua 脚本中这样写:
local optim = require('torch.optim')
local adadelta = optim.Adadelta()
这里,require('torch.optim') 会加载优化包,然后你可以创建一个 Adadelta 优化器的实例。
3. 项目的配置文件介绍
Torch Optim 项目中并没有一个专门的配置文件。这个包的配置主要是通过算法的具体参数来实现的。例如,当你创建一个优化器时,你可以传递不同的参数来配置它的行为。以下是一个使用 Adadelta 算法的例子,并设置了学习率和权重衰减:
local optim = require('torch.optim')
local adadelta = optim.Adadelta(params, {lr=1e-3, weightDecay=1e-5})
在这个例子中,params 是你想要优化的参数,{lr=1e-3, weightDecay=1e-5} 是传递给 Adadelta 算法的配置参数,其中包括学习率 lr 和权重衰减 weightDecay。
以上就是关于 Torch Optim 项目的启动和配置的简单介绍。在实际使用中,你需要根据你的具体需求来调整和配置优化算法的参数。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
648
149
Ascend Extension for PyTorch
Python
210
221
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
655
291
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
250
319
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
486
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.16 K
638
仓颉编程语言运行时与标准库。
Cangjie
136
874
openGauss kernel ~ openGauss is an open source relational database management system
C++
159
216