Probabilistic Normal Epipolar Constraint (PNEC) 项目下载及安装教程
2024-12-08 19:40:29作者:戚魁泉Nursing
1. 项目介绍
Probabilistic Normal Epipolar Constraint (PNEC) 是一个用于帧间旋转优化的开源项目,特别适用于特征位置不确定的情况。该项目在2022年CVPR会议上被提出,旨在通过引入概率性的法线极线约束(PNEC)来提高帧间旋转估计的准确性。PNEC 是传统法线极线约束(NEC)的扩展,能够更好地处理特征位置的不确定性。
2. 项目下载位置
要下载 PNEC 项目,请访问项目的 GitHub 仓库。你可以通过以下命令克隆项目到本地:
git clone https://github.com/tum-vision/pnec.git
3. 项目安装环境配置
在安装 PNEC 项目之前,你需要确保你的系统满足以下依赖项:
- SuiteSparse: 用于稀疏矩阵操作。
- Ceres Solver: 用于非线性优化。
- OpenCV: 用于图像处理。
- Boost (Filesystem): 用于文件系统操作。
- opengv: 用于几何视觉。
- basalt: 包含 Eigen、Sophus 等库。
3.1 安装 SuiteSparse
sudo apt-get install libsuitesparse-dev
3.2 安装 Ceres Solver
你可以按照 Ceres Solver 官方指南进行安装:
# 安装依赖项
sudo apt-get install cmake libgoogle-glog-dev libgflags-dev libatlas-base-dev libeigen3-dev libsuitesparse-dev
# 克隆 Ceres Solver 仓库
git clone https://ceres-solver.googlesource.com/ceres-solver
cd ceres-solver
# 编译并安装
mkdir build
cd build
cmake ..
make -j4
sudo make install
3.3 安装 OpenCV
你可以按照以下指南安装 OpenCV:
# 安装依赖项
sudo apt-get install build-essential cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev
# 克隆 OpenCV 仓库
git clone https://github.com/opencv/opencv.git
cd opencv
# 编译并安装
mkdir build
cd build
cmake ..
make -j4
sudo make install
3.4 安装 Boost (Filesystem)
sudo apt-get install libboost-all-dev
3.5 安装 opengv
opengv 包含在 basalt 中,因此不需要单独安装。
3.6 安装 basalt
git clone --recursive https://gitlab.com/VladyslavUsenko/basalt.git
cd basalt
mkdir build
cd build
cmake ..
make -j4
sudo make install
4. 项目安装方式
在满足所有依赖项后,你可以按照以下步骤安装 PNEC 项目:
# 进入项目目录
cd pnec
# 创建构建目录
mkdir build
cd build
# 生成构建文件
cmake ..
# 编译项目
make -j4
5. 项目处理脚本
PNEC 项目提供了多个脚本来处理不同的任务,例如数据提取、实验创建和结果评估。以下是一些常用的脚本:
5.1 不确定性提取脚本
./uncertainty_extraction.sh "sequence_name"
5.2 创建实验脚本
./create_experiments.sh -d directory -e experiment_number -n number_of_experiments
5.3 运行模拟脚本
./run_simulation.sh -d directory -e experiment_number -n name -m use_essential_matrix_methods -a use_ablation_methods
5.4 评估脚本
python3 /scripts/simulation_evaluation.py -p directory -e experiment_number -n name
通过这些脚本,你可以轻松地运行和评估 PNEC 项目。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
313
React Native鸿蒙化仓库
JavaScript
262
323
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
135
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218