Probabilistic Normal Epipolar Constraint (PNEC) 项目下载及安装教程
2024-12-08 00:00:53作者:戚魁泉Nursing
1. 项目介绍
Probabilistic Normal Epipolar Constraint (PNEC) 是一个用于帧间旋转优化的开源项目,特别适用于特征位置不确定的情况。该项目在2022年CVPR会议上被提出,旨在通过引入概率性的法线极线约束(PNEC)来提高帧间旋转估计的准确性。PNEC 是传统法线极线约束(NEC)的扩展,能够更好地处理特征位置的不确定性。
2. 项目下载位置
要下载 PNEC 项目,请访问项目的 GitHub 仓库。你可以通过以下命令克隆项目到本地:
git clone https://github.com/tum-vision/pnec.git
3. 项目安装环境配置
在安装 PNEC 项目之前,你需要确保你的系统满足以下依赖项:
- SuiteSparse: 用于稀疏矩阵操作。
- Ceres Solver: 用于非线性优化。
- OpenCV: 用于图像处理。
- Boost (Filesystem): 用于文件系统操作。
- opengv: 用于几何视觉。
- basalt: 包含 Eigen、Sophus 等库。
3.1 安装 SuiteSparse
sudo apt-get install libsuitesparse-dev
3.2 安装 Ceres Solver
你可以按照 Ceres Solver 官方指南进行安装:
# 安装依赖项
sudo apt-get install cmake libgoogle-glog-dev libgflags-dev libatlas-base-dev libeigen3-dev libsuitesparse-dev
# 克隆 Ceres Solver 仓库
git clone https://ceres-solver.googlesource.com/ceres-solver
cd ceres-solver
# 编译并安装
mkdir build
cd build
cmake ..
make -j4
sudo make install
3.3 安装 OpenCV
你可以按照以下指南安装 OpenCV:
# 安装依赖项
sudo apt-get install build-essential cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev
# 克隆 OpenCV 仓库
git clone https://github.com/opencv/opencv.git
cd opencv
# 编译并安装
mkdir build
cd build
cmake ..
make -j4
sudo make install
3.4 安装 Boost (Filesystem)
sudo apt-get install libboost-all-dev
3.5 安装 opengv
opengv 包含在 basalt 中,因此不需要单独安装。
3.6 安装 basalt
git clone --recursive https://gitlab.com/VladyslavUsenko/basalt.git
cd basalt
mkdir build
cd build
cmake ..
make -j4
sudo make install
4. 项目安装方式
在满足所有依赖项后,你可以按照以下步骤安装 PNEC 项目:
# 进入项目目录
cd pnec
# 创建构建目录
mkdir build
cd build
# 生成构建文件
cmake ..
# 编译项目
make -j4
5. 项目处理脚本
PNEC 项目提供了多个脚本来处理不同的任务,例如数据提取、实验创建和结果评估。以下是一些常用的脚本:
5.1 不确定性提取脚本
./uncertainty_extraction.sh "sequence_name"
5.2 创建实验脚本
./create_experiments.sh -d directory -e experiment_number -n number_of_experiments
5.3 运行模拟脚本
./run_simulation.sh -d directory -e experiment_number -n name -m use_essential_matrix_methods -a use_ablation_methods
5.4 评估脚本
python3 /scripts/simulation_evaluation.py -p directory -e experiment_number -n name
通过这些脚本,你可以轻松地运行和评估 PNEC 项目。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0298- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
858
511

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
258
298

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
22
5