Probabilistic Normal Epipolar Constraint (PNEC) 项目下载及安装教程
2024-12-08 07:40:33作者:戚魁泉Nursing
1. 项目介绍
Probabilistic Normal Epipolar Constraint (PNEC) 是一个用于帧间旋转优化的开源项目,特别适用于特征位置不确定的情况。该项目在2022年CVPR会议上被提出,旨在通过引入概率性的法线极线约束(PNEC)来提高帧间旋转估计的准确性。PNEC 是传统法线极线约束(NEC)的扩展,能够更好地处理特征位置的不确定性。
2. 项目下载位置
要下载 PNEC 项目,请访问项目的 GitHub 仓库。你可以通过以下命令克隆项目到本地:
git clone https://github.com/tum-vision/pnec.git
3. 项目安装环境配置
在安装 PNEC 项目之前,你需要确保你的系统满足以下依赖项:
- SuiteSparse: 用于稀疏矩阵操作。
- Ceres Solver: 用于非线性优化。
- OpenCV: 用于图像处理。
- Boost (Filesystem): 用于文件系统操作。
- opengv: 用于几何视觉。
- basalt: 包含 Eigen、Sophus 等库。
3.1 安装 SuiteSparse
sudo apt-get install libsuitesparse-dev
3.2 安装 Ceres Solver
你可以按照 Ceres Solver 官方指南进行安装:
# 安装依赖项
sudo apt-get install cmake libgoogle-glog-dev libgflags-dev libatlas-base-dev libeigen3-dev libsuitesparse-dev
# 克隆 Ceres Solver 仓库
git clone https://ceres-solver.googlesource.com/ceres-solver
cd ceres-solver
# 编译并安装
mkdir build
cd build
cmake ..
make -j4
sudo make install
3.3 安装 OpenCV
你可以按照以下指南安装 OpenCV:
# 安装依赖项
sudo apt-get install build-essential cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev
# 克隆 OpenCV 仓库
git clone https://github.com/opencv/opencv.git
cd opencv
# 编译并安装
mkdir build
cd build
cmake ..
make -j4
sudo make install
3.4 安装 Boost (Filesystem)
sudo apt-get install libboost-all-dev
3.5 安装 opengv
opengv 包含在 basalt 中,因此不需要单独安装。
3.6 安装 basalt
git clone --recursive https://gitlab.com/VladyslavUsenko/basalt.git
cd basalt
mkdir build
cd build
cmake ..
make -j4
sudo make install
4. 项目安装方式
在满足所有依赖项后,你可以按照以下步骤安装 PNEC 项目:
# 进入项目目录
cd pnec
# 创建构建目录
mkdir build
cd build
# 生成构建文件
cmake ..
# 编译项目
make -j4
5. 项目处理脚本
PNEC 项目提供了多个脚本来处理不同的任务,例如数据提取、实验创建和结果评估。以下是一些常用的脚本:
5.1 不确定性提取脚本
./uncertainty_extraction.sh "sequence_name"
5.2 创建实验脚本
./create_experiments.sh -d directory -e experiment_number -n number_of_experiments
5.3 运行模拟脚本
./run_simulation.sh -d directory -e experiment_number -n name -m use_essential_matrix_methods -a use_ablation_methods
5.4 评估脚本
python3 /scripts/simulation_evaluation.py -p directory -e experiment_number -n name
通过这些脚本,你可以轻松地运行和评估 PNEC 项目。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
496
3.64 K
Ascend Extension for PyTorch
Python
300
338
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
306
131
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
868
479
暂无简介
Dart
744
180
React Native鸿蒙化仓库
JavaScript
297
346
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
11
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
66
20
仓颉编译器源码及 cjdb 调试工具。
C++
150
882