Jackett 开源项目安装与使用指南
一、项目介绍
Jackett 是一个API支持的中间件服务,它旨在为各种流行的资源索引网站提供统一的查询接口.通过将来自不同应用程序(如Sonarr、Radarr、SickRage等)的请求转换为特定于索引站点的HTTP请求,Jackett能够解析响应并将其结果反馈给发起请求的应用程序.这使得获取最新的上传资源和执行搜索变得简单.
二、项目快速启动
为了在您的系统上运行Jackett,您首先需要确保已经安装了以下组件:
- .NET Core SDK 8.0 或更高版本
- Linux x64 架构(如果您正在Linux系统上运行)
接下来,打开终端或命令提示符窗口,并在适当目录中创建一个名为 Jackett 的工作文件夹.假设您想将此文件夹放在用户的主目录中,可以输入以下命令:
mkdir ~/Jackett
cd ~/Jackett
然后从GitHub下载并提取Jackett仓库中的源代码:
git clone https://github.com/Jackett/Jackett.git src
cd src
现在我们需要编译和发布Jackett Server可执行文件.对于dotnet core版本,dotnet CLI工具提供了publish命令用于此目的.以下是发布Linux x64架构下Jackett Server的示例命令:
dotnet publish Jackett.Server -f net8.0 --self-contained -r linux-x64 -c Debug
执行上述步骤后,您会在 /Jackett Server/bin/Debug/net8.0/linux-x64 目录下找到Jackett可执行文件.要运行该服务,只需从该位置调用 jackett 命令即可:
./jackett
一旦Jackett开始运行,您可以通过访问其默认监听端口(http://localhost:9117)来测试连接是否正常建立。
三、应用案例和最佳实践
应用案例
Jackett最常见的应用场景是作为Sonarr、Radarr等媒体管理应用程序的中间件,以帮助它们发现新的和更新的媒体内容.Sonarr和Radarr这样的软件通常用于自动化下载电影和电视剧集;然而,它们需要从多个来源收集信息,例如资源网站.Jackett简化了这一过程,使这些媒体管理器能够轻松地检查多种索引平台上的新上传资源。
最佳实践
当部署Jackett时,有几个关键点需要注意:
-
安全:由于Jackett可能会暴露敏感信息到互联网上,因此应该限制只有授权设备才能访问.考虑将Jackett部署在私有的网络环境里,并通过反向代理(如NGINX或Apache)公开对外,这样可以更好地控制谁能看到你的数据.
-
性能优化:在高并发环境下运行Jackett可能会遇到性能瓶颈,尤其是在低端硬件平台上.此时应关注内存占用以及CPU利用率情况,可能需要对某些参数进行调整以达到最优配置.
此外还建议定期检查Jackett的更新情况,以便及早获得最新功能或安全补丁.
四、典型生态项目
除了Jackett核心功能以外,围绕它的生态系统也相当丰富.这里列举几个值得关注的相关项目:
-
Docker:Jackett Docker镜像受到社区高度评价,适用于那些需要轻量级容器化解决方案的场景.
-
SynoCommunity:Synology NAS平台上有Jackett的Beta包可用,便于用户无需额外手动配置即刻部署Jackett服务.
-
Reverse Proxy Configuration:如果你计划将Jackett置于反向代理之后,需要正确设置代理传递规则以保证所有请求头均被恰当处理.X-Forwarded-Proto标头必须指向实际使用的协议类型(例如HTTPS).
希望本指南有助于理解如何安装和利用Jackett的强大功能!
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00