Microsoft STL项目C++23标准支持现状与未来展望
C++23标准支持现状
Microsoft STL团队近期公布了关于C++23标准支持的最新进展。根据官方信息,STL库层面的C++23功能已基本完成,但编译器前端(C1XX)对C++23核心语言特性的支持尚未开始。这种库实现领先于编译器支持的情况在C++标准化进程中并不罕见。
目前开发人员只能通过/std:c++latest标志来启用C++23特性,这个标志会触发"实验性功能"的警告提示。值得注意的是,虽然标记为"实验性",但团队对待这些新特性的bug修复优先级实际上很高,通常仅次于回归问题的修复。
为何尚未提供正式标志
STL团队解释了为何尚未提供正式的/std:c++23标志,主要原因包括:
-
ABI稳定性考量:团队吸取了C++20标准实施时的经验,当时过早锁定ABI导致
<format>等组件需要频繁调整。现在他们计划在STL和编译器都实现功能完整后,再观察至少两个更新周期(约半年)才锁定ABI。 -
功能完整性要求:Microsoft采取的策略是必须同时满足STL和编译器都实现C++23所有特性后,才会提供正式标志。这与某些其他编译器允许部分实现就提供标志的做法不同。
-
并行开发挑战:当前STL团队主要依靠社区贡献者来完成C++23剩余特性,如flat_set、flat_map和generator等组件。同时编译器团队尚未开始C++23核心语言特性的工作。
技术实现细节
在技术实现层面,/std:c++latest与未来/std:c++23的主要区别在于ABI稳定性保证。当前模式下,团队保留随时调整类内存布局的权利以优化性能和正确性。而一旦进入正式标志阶段,这些内部表示将被锁定以保证二进制兼容性。
值得注意的是,虽然/std:c++latest理论上可能包含C++26的特性,但实际上Microsoft目前并未实现任何C++26专属功能,仅实现了被追溯认定为缺陷修复的改进。
社区参与与开源展望
STL团队积极鼓励社区参与C++23剩余特性的实现工作。目前几个关键分支(feature/flat_map、feature/flat_set和feature/generator)都开放给贡献者。团队承诺会优先处理这些特性分支的PR,保持较快的合并节奏。
关于编译器前端开源的问题,虽然技术上有可能性,但考虑到当前公司环境和资源限制,短期内不太可能实现。团队更现实的近期目标是先将VCRuntime开源,这已经是相对较小的请求了。
未来展望
根据当前进度,C++23的正式支持可能还需要相当一段时间。开发者在生产环境中使用新特性时,需要权衡功能需求与稳定性要求。团队建议关注特性测试宏(_cpp*)来精确控制功能使用,而非完全依赖标准版本标志。
随着C++标准演进加速,Microsoft可能需要重新评估其实现策略,以平衡功能完整性要求与开发者对新特性的迫切需求。不过在当前阶段,稳定性仍是团队最优先考虑的因素。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00