解决drf-spectacular与djangorestframework-simplejwt的兼容性问题
在使用Django REST framework开发API时,drf-spectacular是一个非常流行的自动生成OpenAPI/Swagger文档的工具。而djangorestframework-simplejwt则是实现JWT认证的常用库。本文将介绍如何解决这两个库在集成时可能遇到的兼容性问题。
问题现象
当开发者在Django项目的settings.py中同时配置了drf-spectacular和djangorestframework-simplejwt时,可能会遇到API文档无法加载的问题,并出现TypeError: 'str' object is not callable的错误提示。
问题根源
这个问题的根本原因在于REST_FRAMEWORK配置中的DEFAULT_AUTHENTICATION_CLASSES设置错误。开发者错误地使用了字典(Dictionary)而不是元组(Tuple)或列表(List)来定义认证类。
错误配置示例:
REST_FRAMEWORK = {
'DEFAULT_SCHEMA_CLASS': 'drf_spectacular.openapi.AutoSchema',
'DEFAULT_AUTHENTICATION_CLASSES': { # 错误:使用了字典
'rest_framework_simplejwt.authentication.JWTAuthentication'
}
}
正确配置方法
Django REST framework要求DEFAULT_AUTHENTICATION_CLASSES必须是一个可迭代的序列(如元组或列表),因为可能有多个认证类需要配置。正确的配置应该是:
REST_FRAMEWORK = {
'DEFAULT_SCHEMA_CLASS': 'drf_spectacular.openapi.AutoSchema',
'DEFAULT_AUTHENTICATION_CLASSES': ( # 使用元组
'rest_framework_simplejwt.authentication.JWTAuthentication',
)
}
或者使用列表:
REST_FRAMEWORK = {
'DEFAULT_SCHEMA_CLASS': 'drf_spectacular.openapi.AutoSchema',
'DEFAULT_AUTHENTICATION_CLASSES': [ # 使用列表
'rest_framework_simplejwt.authentication.JWTAuthentication',
]
}
为什么会出现这个错误
当Django REST framework尝试初始化认证类时,它会遍历DEFAULT_AUTHENTICATION_CLASSES中的每个元素,并尝试调用它们(即执行auth())。如果DEFAULT_AUTHENTICATION_CLASSES是一个字典,遍历时得到的将是字典的键(字符串),而不是认证类本身,因此会出现"str对象不可调用"的错误。
最佳实践建议
- 始终使用元组或列表来定义DEFAULT_AUTHENTICATION_CLASSES
- 确保drf-spectacular版本是最新的(在撰写本文时最新版本是0.26.5)
- 如果使用多个认证类,确保它们之间有适当的顺序
- 考虑在开发环境中保留SessionAuthentication以便于测试
REST_FRAMEWORK = {
'DEFAULT_SCHEMA_CLASS': 'drf_spectacular.openapi.AutoSchema',
'DEFAULT_AUTHENTICATION_CLASSES': [
'rest_framework_simplejwt.authentication.JWTAuthentication',
'rest_framework.authentication.SessionAuthentication', # 开发时方便测试
]
}
通过以上配置,drf-spectacular将能够正确生成包含JWT认证支持的OpenAPI文档,开发者也可以在Swagger UI中方便地测试JWT认证的API端点。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00