解决drf-spectacular与djangorestframework-simplejwt的兼容性问题
在使用Django REST framework开发API时,drf-spectacular是一个非常流行的自动生成OpenAPI/Swagger文档的工具。而djangorestframework-simplejwt则是实现JWT认证的常用库。本文将介绍如何解决这两个库在集成时可能遇到的兼容性问题。
问题现象
当开发者在Django项目的settings.py中同时配置了drf-spectacular和djangorestframework-simplejwt时,可能会遇到API文档无法加载的问题,并出现TypeError: 'str' object is not callable的错误提示。
问题根源
这个问题的根本原因在于REST_FRAMEWORK配置中的DEFAULT_AUTHENTICATION_CLASSES设置错误。开发者错误地使用了字典(Dictionary)而不是元组(Tuple)或列表(List)来定义认证类。
错误配置示例:
REST_FRAMEWORK = {
'DEFAULT_SCHEMA_CLASS': 'drf_spectacular.openapi.AutoSchema',
'DEFAULT_AUTHENTICATION_CLASSES': { # 错误:使用了字典
'rest_framework_simplejwt.authentication.JWTAuthentication'
}
}
正确配置方法
Django REST framework要求DEFAULT_AUTHENTICATION_CLASSES必须是一个可迭代的序列(如元组或列表),因为可能有多个认证类需要配置。正确的配置应该是:
REST_FRAMEWORK = {
'DEFAULT_SCHEMA_CLASS': 'drf_spectacular.openapi.AutoSchema',
'DEFAULT_AUTHENTICATION_CLASSES': ( # 使用元组
'rest_framework_simplejwt.authentication.JWTAuthentication',
)
}
或者使用列表:
REST_FRAMEWORK = {
'DEFAULT_SCHEMA_CLASS': 'drf_spectacular.openapi.AutoSchema',
'DEFAULT_AUTHENTICATION_CLASSES': [ # 使用列表
'rest_framework_simplejwt.authentication.JWTAuthentication',
]
}
为什么会出现这个错误
当Django REST framework尝试初始化认证类时,它会遍历DEFAULT_AUTHENTICATION_CLASSES中的每个元素,并尝试调用它们(即执行auth())。如果DEFAULT_AUTHENTICATION_CLASSES是一个字典,遍历时得到的将是字典的键(字符串),而不是认证类本身,因此会出现"str对象不可调用"的错误。
最佳实践建议
- 始终使用元组或列表来定义DEFAULT_AUTHENTICATION_CLASSES
- 确保drf-spectacular版本是最新的(在撰写本文时最新版本是0.26.5)
- 如果使用多个认证类,确保它们之间有适当的顺序
- 考虑在开发环境中保留SessionAuthentication以便于测试
REST_FRAMEWORK = {
'DEFAULT_SCHEMA_CLASS': 'drf_spectacular.openapi.AutoSchema',
'DEFAULT_AUTHENTICATION_CLASSES': [
'rest_framework_simplejwt.authentication.JWTAuthentication',
'rest_framework.authentication.SessionAuthentication', # 开发时方便测试
]
}
通过以上配置,drf-spectacular将能够正确生成包含JWT认证支持的OpenAPI文档,开发者也可以在Swagger UI中方便地测试JWT认证的API端点。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00