解决drf-spectacular与djangorestframework-simplejwt的兼容性问题
在使用Django REST framework开发API时,drf-spectacular是一个非常流行的自动生成OpenAPI/Swagger文档的工具。而djangorestframework-simplejwt则是实现JWT认证的常用库。本文将介绍如何解决这两个库在集成时可能遇到的兼容性问题。
问题现象
当开发者在Django项目的settings.py中同时配置了drf-spectacular和djangorestframework-simplejwt时,可能会遇到API文档无法加载的问题,并出现TypeError: 'str' object is not callable
的错误提示。
问题根源
这个问题的根本原因在于REST_FRAMEWORK配置中的DEFAULT_AUTHENTICATION_CLASSES设置错误。开发者错误地使用了字典(Dictionary)而不是元组(Tuple)或列表(List)来定义认证类。
错误配置示例:
REST_FRAMEWORK = {
'DEFAULT_SCHEMA_CLASS': 'drf_spectacular.openapi.AutoSchema',
'DEFAULT_AUTHENTICATION_CLASSES': { # 错误:使用了字典
'rest_framework_simplejwt.authentication.JWTAuthentication'
}
}
正确配置方法
Django REST framework要求DEFAULT_AUTHENTICATION_CLASSES必须是一个可迭代的序列(如元组或列表),因为可能有多个认证类需要配置。正确的配置应该是:
REST_FRAMEWORK = {
'DEFAULT_SCHEMA_CLASS': 'drf_spectacular.openapi.AutoSchema',
'DEFAULT_AUTHENTICATION_CLASSES': ( # 使用元组
'rest_framework_simplejwt.authentication.JWTAuthentication',
)
}
或者使用列表:
REST_FRAMEWORK = {
'DEFAULT_SCHEMA_CLASS': 'drf_spectacular.openapi.AutoSchema',
'DEFAULT_AUTHENTICATION_CLASSES': [ # 使用列表
'rest_framework_simplejwt.authentication.JWTAuthentication',
]
}
为什么会出现这个错误
当Django REST framework尝试初始化认证类时,它会遍历DEFAULT_AUTHENTICATION_CLASSES中的每个元素,并尝试调用它们(即执行auth()
)。如果DEFAULT_AUTHENTICATION_CLASSES是一个字典,遍历时得到的将是字典的键(字符串),而不是认证类本身,因此会出现"str对象不可调用"的错误。
最佳实践建议
- 始终使用元组或列表来定义DEFAULT_AUTHENTICATION_CLASSES
- 确保drf-spectacular版本是最新的(在撰写本文时最新版本是0.26.5)
- 如果使用多个认证类,确保它们之间有适当的顺序
- 考虑在开发环境中保留SessionAuthentication以便于测试
REST_FRAMEWORK = {
'DEFAULT_SCHEMA_CLASS': 'drf_spectacular.openapi.AutoSchema',
'DEFAULT_AUTHENTICATION_CLASSES': [
'rest_framework_simplejwt.authentication.JWTAuthentication',
'rest_framework.authentication.SessionAuthentication', # 开发时方便测试
]
}
通过以上配置,drf-spectacular将能够正确生成包含JWT认证支持的OpenAPI文档,开发者也可以在Swagger UI中方便地测试JWT认证的API端点。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









