Deep-Searcher项目中的实时消息回调机制设计与实现
2025-06-06 09:14:29作者:史锋燃Gardner
背景与需求分析
在AI代理开发过程中,实时监控代理的工作状态对于提升用户体验至关重要。Deep-Searcher作为一个开源项目,其核心功能是通过多轮检索和推理来回答用户查询。传统实现中,前端用户往往无法实时了解代理的内部工作流程,只能被动等待最终结果。
技术方案设计
基于Celery和SQLite的异步消息回调系统能够有效解决这个问题。该方案包含三个核心组件:
- 任务分发层:使用Celery作为分布式任务队列,接收前端查询请求并异步执行
- 状态存储层:采用SQLite数据库持久化存储任务执行过程中的各种状态信息
- 消息回调层:实现前端轮询机制,实时获取任务执行进度
关键实现细节
数据库设计
SQLite数据库中设计了专门的任务状态表,包含以下字段:
- task_id:唯一任务标识符
- status:当前任务状态(运行中/完成/错误)
- answer:生成的最终答案
- chunks:检索到的文本片段
- debug_message:详细的调试信息
- timestamp:状态更新时间戳
状态更新机制
在代理执行的每个关键节点(如开始检索、生成摘要等)都会更新数据库状态。采用增量更新策略,确保历史信息不会丢失:
# 示例状态更新代码
data = {
'task_id': input_data["id"],
'status': "Running",
'answer': "",
'chunks': "",
'debug_message': "正在处理检索结果..."
}
update_agent_msg(data)
前端轮询实现
前端通过定期查询数据库获取最新状态,实现了准实时监控:
def print_task_msg(id):
while True:
task = get_task_by_id(task_id=id)
if task and task['status'] == 'Done':
print(f"任务完成: {task['answer']}")
break
time.sleep(0.1) # 100ms轮询间隔
技术优势
- 低延迟:通过短周期轮询(100ms)实现准实时反馈
- 可靠性:SQLite确保状态持久化,即使服务重启也不丢失
- 可扩展性:Celery架构支持分布式部署,适合高并发场景
- 调试友好:完整记录代理执行过程,便于问题排查
实际应用效果
该机制实施后能够:
- 实时显示代理的思考过程(如"正在检索相关文档")
- 及时反馈执行错误信息
- 保留完整的执行历史记录
- 支持多用户并发查询
总结与展望
这种消息回调机制为Deep-Searcher项目带来了显著的体验提升。未来可以考虑:
- 改用WebSocket实现真正的实时推送
- 增加状态变更的事件通知机制
- 支持更细粒度的执行步骤追踪
- 添加执行耗时统计等监控指标
该方案不仅适用于Deep-Searcher项目,也可为其他需要长时任务处理的AI系统提供参考。通过简单的技术组合,实现了专业级的任务监控体验。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
294
2.62 K
暂无简介
Dart
585
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
606
185
deepin linux kernel
C
24
7
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.05 K
610
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
358
2.29 K
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
760
72
Ascend Extension for PyTorch
Python
124
149
仓颉编译器源码及 cjdb 调试工具。
C++
122
424
仓颉编程语言运行时与标准库。
Cangjie
130
437