Deep-Searcher项目中的实时消息回调机制设计与实现
2025-06-06 07:40:39作者:史锋燃Gardner
背景与需求分析
在AI代理开发过程中,实时监控代理的工作状态对于提升用户体验至关重要。Deep-Searcher作为一个开源项目,其核心功能是通过多轮检索和推理来回答用户查询。传统实现中,前端用户往往无法实时了解代理的内部工作流程,只能被动等待最终结果。
技术方案设计
基于Celery和SQLite的异步消息回调系统能够有效解决这个问题。该方案包含三个核心组件:
- 任务分发层:使用Celery作为分布式任务队列,接收前端查询请求并异步执行
- 状态存储层:采用SQLite数据库持久化存储任务执行过程中的各种状态信息
- 消息回调层:实现前端轮询机制,实时获取任务执行进度
关键实现细节
数据库设计
SQLite数据库中设计了专门的任务状态表,包含以下字段:
- task_id:唯一任务标识符
- status:当前任务状态(运行中/完成/错误)
- answer:生成的最终答案
- chunks:检索到的文本片段
- debug_message:详细的调试信息
- timestamp:状态更新时间戳
状态更新机制
在代理执行的每个关键节点(如开始检索、生成摘要等)都会更新数据库状态。采用增量更新策略,确保历史信息不会丢失:
# 示例状态更新代码
data = {
'task_id': input_data["id"],
'status': "Running",
'answer': "",
'chunks': "",
'debug_message': "正在处理检索结果..."
}
update_agent_msg(data)
前端轮询实现
前端通过定期查询数据库获取最新状态,实现了准实时监控:
def print_task_msg(id):
while True:
task = get_task_by_id(task_id=id)
if task and task['status'] == 'Done':
print(f"任务完成: {task['answer']}")
break
time.sleep(0.1) # 100ms轮询间隔
技术优势
- 低延迟:通过短周期轮询(100ms)实现准实时反馈
- 可靠性:SQLite确保状态持久化,即使服务重启也不丢失
- 可扩展性:Celery架构支持分布式部署,适合高并发场景
- 调试友好:完整记录代理执行过程,便于问题排查
实际应用效果
该机制实施后能够:
- 实时显示代理的思考过程(如"正在检索相关文档")
- 及时反馈执行错误信息
- 保留完整的执行历史记录
- 支持多用户并发查询
总结与展望
这种消息回调机制为Deep-Searcher项目带来了显著的体验提升。未来可以考虑:
- 改用WebSocket实现真正的实时推送
- 增加状态变更的事件通知机制
- 支持更细粒度的执行步骤追踪
- 添加执行耗时统计等监控指标
该方案不仅适用于Deep-Searcher项目,也可为其他需要长时任务处理的AI系统提供参考。通过简单的技术组合,实现了专业级的任务监控体验。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00Hunyuan3D-Part
腾讯混元3D-Part00Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0279community
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息012Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析2 freeCodeCamp课程视频测验中的Tab键导航问题解析3 freeCodeCamp论坛排行榜项目中的错误日志规范要求4 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析5 freeCodeCamp音乐播放器项目中的函数调用问题解析6 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析7 freeCodeCamp全栈开发课程中React实验项目的分类修正8 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析9 freeCodeCamp课程页面空白问题的技术分析与解决方案10 freeCodeCamp博客页面工作坊中的断言方法优化建议
最新内容推荐
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
156
1.99 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

Ascend Extension for PyTorch
Python
36
72

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
942
555

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
405
387

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
70

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
993
395

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
515
45

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
345
1.32 K