Kubernetes Kueue项目中TAS与ProvisioningRequests的集成方案
背景与需求
Kubernetes Kueue项目作为集群资源队列管理系统,近期正在推进TAS(Topology Aware Scheduling)与ProvisioningRequests功能的集成工作。这项工作的核心目标是使Kueue能够支持集群自动扩展场景下的拓扑感知调度能力。
在Kubernetes生态中,TAS功能允许工作负载根据底层硬件的拓扑结构(如NUMA节点、CPU插槽等)进行优化调度,而ProvisioningRequests则是集群自动扩展机制的关键组件。两者的结合将为用户提供更智能、更高效的资源调度能力。
技术实现方案
项目贡献者提出了一个创新的两阶段调度方案来解决这一技术挑战:
-
第一阶段调度:当工作负载同时需要TAS和ProvisioningRequests时,调度器在第一轮调度过程中仅处理配额预留(QuotaReservation),暂不计算TAS分配方案。
-
资源检查:确保配额预留成功且所有前置条件(包括ProvisioningRequests)均已满足。
-
第二阶段调度:强制调度器对工作负载进行第二轮调度处理,此时调度决策将与配额预留保持一致,但会增加更详细的TAS分配计算。
这种分阶段处理的方式既保证了调度的原子性,又确保了拓扑感知调度的精确性,是解决复杂调度场景的优雅方案。
实现细节与优化
在具体实现过程中,开发团队发现并修复了一个重要的边界条件问题:当Kueue控制器重启后,缓存可能尚未完全重建,导致集群队列(cq)对象可能为nil。团队提出的解决方案是在调用cq.Parent()前先进行NoFit检查,这一修复不仅解决了当前问题,也为系统稳定性提供了额外保障。
此外,团队还讨论了关于调度队列优化的可能性,包括:
- 在获取调度条目后将其分为有效条目和无效条目
- 仅将有效条目传递给调度迭代器
- 对无效条目实施重新排队机制
这些优化思路为进一步提升Kueue的调度效率和可靠性提供了方向。
项目进展与协作
该项目作为Kueue 0.12版本的重点功能,开发团队采用了高效的协作模式。核心开发者负责原型设计和关键问题解决,同时积极邀请社区成员参与代码审查、测试验证和辅助功能开发。特别是针对重新排队机制的指数退避实现,团队保持了开放的协作态度,确保项目按时高质量交付。
总结与展望
Kueue项目对TAS与ProvisioningRequests的集成支持,标志着该项目在复杂调度场景处理能力上的重要进步。这一功能将为用户在自动扩展环境中实现拓扑感知调度提供强大支持,进一步巩固Kueue作为Kubernetes生态中领先的队列管理系统的地位。
随着该功能的成熟和完善,用户可以期待在混合云、AI训练等资源敏感型场景中获得更优的资源利用率和性能表现。开发团队也表示将继续优化相关实现,并欢迎更多社区贡献者参与其中。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00