在conventional-changelog中扩展提交信息的技术实践
conventional-changelog是一个流行的生成变更日志的工具,它遵循约定式提交规范。在实际项目开发中,我们经常需要扩展默认的提交信息,比如添加GitHub用户登录名等额外信息。本文将详细介绍如何在conventional-changelog中实现这一需求。
问题背景
在Lerna-Lite项目中,开发者需要从GitHub GraphQL API获取提交信息,并将GitHub用户登录名添加到变更日志中。在conventional-changelog的旧版本中,可以通过修改writerOpts.commitPartial和transform函数来实现这一需求。但随着版本升级,提交对象变为不可变,原有的扩展方式不再适用。
技术实现方案
核心思路
- 保留原始transform函数的引用
- 执行原始transform函数获取处理后的提交对象
- 扩展提交对象,添加自定义属性
- 返回扩展后的提交对象
具体实现代码
// 获取预设配置
const preset = 'conventional-changelog-conventionalcommits';
const config = await getChangelogConfig(preset, rootPath);
// 覆盖writerOpts的transform函数
// 保留原始transform函数引用,先执行原始函数再执行自定义扩展
const originalTransform = config.writer?.transform;
writerOpts.transform = (commit, context, options) => {
// 执行原始transform函数
const transCommit = originalTransform?.(commit, context, options) || null;
// 添加自定义属性(如用户登录名)
if (transCommit) {
return { ...transCommit, userLogin: 'user1' };
}
return transCommit;
};
// 生成变更日志
const changelogStream = conventionalChangelogCore(
options,
context,
gitRawCommitsOpts,
undefined,
writerOpts
);
关键点解析
-
版本兼容性:conventional-changelog-writer v10存在不终止的问题,建议使用v11及以上版本。
-
transform函数位置:自定义transform函数需要设置在writerOpts(第三个参数)中,而不是conventionalChangelogCore的第一个参数。
-
执行顺序:必须先执行原始transform函数,再执行自定义扩展逻辑,确保预设的所有转换都已应用。
-
不可变对象处理:通过对象展开运算符(...)创建新对象,避免直接修改原始提交对象。
实际应用效果
通过上述方法,可以在变更日志中显示扩展后的提交信息,例如:
feat: 添加新功能 (@user1)
fix: 修复某个bug (@user2)
这种格式既保持了约定式提交的规范性,又增加了开发者识别信息,提高了变更日志的可读性和实用性。
总结
在conventional-changelog中扩展提交信息需要理解其处理流程和版本差异。关键在于正确处理transform函数的执行顺序和不可变对象的扩展方式。本文介绍的方法不仅适用于添加GitHub用户信息,也可以应用于其他需要扩展提交信息的场景,具有很好的通用性和实用性。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00