在conventional-changelog中扩展提交信息的技术实践
conventional-changelog是一个流行的生成变更日志的工具,它遵循约定式提交规范。在实际项目开发中,我们经常需要扩展默认的提交信息,比如添加GitHub用户登录名等额外信息。本文将详细介绍如何在conventional-changelog中实现这一需求。
问题背景
在Lerna-Lite项目中,开发者需要从GitHub GraphQL API获取提交信息,并将GitHub用户登录名添加到变更日志中。在conventional-changelog的旧版本中,可以通过修改writerOpts.commitPartial和transform函数来实现这一需求。但随着版本升级,提交对象变为不可变,原有的扩展方式不再适用。
技术实现方案
核心思路
- 保留原始transform函数的引用
- 执行原始transform函数获取处理后的提交对象
- 扩展提交对象,添加自定义属性
- 返回扩展后的提交对象
具体实现代码
// 获取预设配置
const preset = 'conventional-changelog-conventionalcommits';
const config = await getChangelogConfig(preset, rootPath);
// 覆盖writerOpts的transform函数
// 保留原始transform函数引用,先执行原始函数再执行自定义扩展
const originalTransform = config.writer?.transform;
writerOpts.transform = (commit, context, options) => {
// 执行原始transform函数
const transCommit = originalTransform?.(commit, context, options) || null;
// 添加自定义属性(如用户登录名)
if (transCommit) {
return { ...transCommit, userLogin: 'user1' };
}
return transCommit;
};
// 生成变更日志
const changelogStream = conventionalChangelogCore(
options,
context,
gitRawCommitsOpts,
undefined,
writerOpts
);
关键点解析
-
版本兼容性:conventional-changelog-writer v10存在不终止的问题,建议使用v11及以上版本。
-
transform函数位置:自定义transform函数需要设置在writerOpts(第三个参数)中,而不是conventionalChangelogCore的第一个参数。
-
执行顺序:必须先执行原始transform函数,再执行自定义扩展逻辑,确保预设的所有转换都已应用。
-
不可变对象处理:通过对象展开运算符(...)创建新对象,避免直接修改原始提交对象。
实际应用效果
通过上述方法,可以在变更日志中显示扩展后的提交信息,例如:
feat: 添加新功能 (@user1)
fix: 修复某个bug (@user2)
这种格式既保持了约定式提交的规范性,又增加了开发者识别信息,提高了变更日志的可读性和实用性。
总结
在conventional-changelog中扩展提交信息需要理解其处理流程和版本差异。关键在于正确处理transform函数的执行顺序和不可变对象的扩展方式。本文介绍的方法不仅适用于添加GitHub用户信息,也可以应用于其他需要扩展提交信息的场景,具有很好的通用性和实用性。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~050CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0305- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









