JetCache项目中的ClassNotFoundException问题解析
问题背景
在使用JetCache 2.7.7版本与SpringBoot 3.1.6(WebFlux)结合时,开发者在配置了@CacheRefresh注解后遇到了ClassNotFoundException异常。异常信息显示系统无法找到com.alicp.jetcache.CacheValueHolder类,导致缓存解码失败。
问题现象
当系统尝试通过JetCache的Redis缓存实现获取数据时,抛出了CacheEncodeException异常,根本原因是ClassNotFoundException。异常堆栈显示,问题发生在Java反序列化过程中,系统无法加载CacheValueHolder类。
技术分析
-
序列化机制:JetCache默认使用Java原生序列化机制来存储缓存值。在序列化过程中,对象会被转换为字节流;反序列化时,则需要能够找到原始类的定义。
-
类加载问题:在Spring环境中,特别是WebFlux等反应式编程场景下,类加载器可能与传统Spring MVC有所不同。当反序列化时,如果类加载器无法找到对应的类定义,就会抛出
ClassNotFoundException。 -
版本兼容性:JetCache 2.7.7版本与SpringBoot 3.1.6可能存在一些不兼容问题,特别是在类加载和序列化处理方面。
解决方案
-
升级JetCache版本:该问题在JetCache的后续版本中已被修复。建议升级到最新稳定版本。
-
自定义序列化方式:可以配置JetCache使用其他序列化方式,如JSON或Kryo,避免依赖Java原生序列化机制:
@Bean public GlobalCacheConfig config() { Map<String, CacheBuilder> localBuilders = new HashMap<>(); RedisCacheBuilder redisCacheBuilder = RedisCacheBuilder.createRedisCacheBuilder() .keyConvertor(FastjsonKeyConvertor.INSTANCE) .valueEncoder(JavaValueEncoder.INSTANCE) .valueDecoder(JavaValueDecoder.INSTANCE); localBuilders.put(CacheConsts.DEFAULT_AREA, redisCacheBuilder); GlobalCacheConfig globalCacheConfig = new GlobalCacheConfig(); globalCacheConfig.setLocalCacheBuilders(localBuilders); return globalCacheConfig; } -
检查类路径:确保所有必要的JetCache类都在应用的类路径中,特别是
CacheValueHolder类。
最佳实践建议
-
版本匹配:在使用SpringBoot 3.x时,建议使用JetCache的最新版本,以确保最佳兼容性。
-
序列化选择:对于生产环境,考虑使用更高效的序列化方案,如Kryo或Protobuf,而非Java原生序列化。
-
异常处理:在缓存操作周围添加适当的异常处理逻辑,优雅地处理可能的序列化/反序列化失败情况。
-
测试验证:在升级或修改序列化配置后,应进行充分的测试,特别是在缓存刷新和加载场景下。
总结
JetCache作为一款高性能缓存框架,在实际应用中可能会遇到类加载和序列化相关问题。通过理解框架的工作原理和配置选项,开发者可以有效地解决这类问题。对于本例中的ClassNotFoundException,升级框架版本是最直接的解决方案,同时也建议开发者评估更适合自己项目的序列化方案。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00