JetCache项目中的ClassNotFoundException问题解析
问题背景
在使用JetCache 2.7.7版本与SpringBoot 3.1.6(WebFlux)结合时,开发者在配置了@CacheRefresh注解后遇到了ClassNotFoundException异常。异常信息显示系统无法找到com.alicp.jetcache.CacheValueHolder类,导致缓存解码失败。
问题现象
当系统尝试通过JetCache的Redis缓存实现获取数据时,抛出了CacheEncodeException异常,根本原因是ClassNotFoundException。异常堆栈显示,问题发生在Java反序列化过程中,系统无法加载CacheValueHolder类。
技术分析
-
序列化机制:JetCache默认使用Java原生序列化机制来存储缓存值。在序列化过程中,对象会被转换为字节流;反序列化时,则需要能够找到原始类的定义。
-
类加载问题:在Spring环境中,特别是WebFlux等反应式编程场景下,类加载器可能与传统Spring MVC有所不同。当反序列化时,如果类加载器无法找到对应的类定义,就会抛出
ClassNotFoundException。 -
版本兼容性:JetCache 2.7.7版本与SpringBoot 3.1.6可能存在一些不兼容问题,特别是在类加载和序列化处理方面。
解决方案
-
升级JetCache版本:该问题在JetCache的后续版本中已被修复。建议升级到最新稳定版本。
-
自定义序列化方式:可以配置JetCache使用其他序列化方式,如JSON或Kryo,避免依赖Java原生序列化机制:
@Bean public GlobalCacheConfig config() { Map<String, CacheBuilder> localBuilders = new HashMap<>(); RedisCacheBuilder redisCacheBuilder = RedisCacheBuilder.createRedisCacheBuilder() .keyConvertor(FastjsonKeyConvertor.INSTANCE) .valueEncoder(JavaValueEncoder.INSTANCE) .valueDecoder(JavaValueDecoder.INSTANCE); localBuilders.put(CacheConsts.DEFAULT_AREA, redisCacheBuilder); GlobalCacheConfig globalCacheConfig = new GlobalCacheConfig(); globalCacheConfig.setLocalCacheBuilders(localBuilders); return globalCacheConfig; } -
检查类路径:确保所有必要的JetCache类都在应用的类路径中,特别是
CacheValueHolder类。
最佳实践建议
-
版本匹配:在使用SpringBoot 3.x时,建议使用JetCache的最新版本,以确保最佳兼容性。
-
序列化选择:对于生产环境,考虑使用更高效的序列化方案,如Kryo或Protobuf,而非Java原生序列化。
-
异常处理:在缓存操作周围添加适当的异常处理逻辑,优雅地处理可能的序列化/反序列化失败情况。
-
测试验证:在升级或修改序列化配置后,应进行充分的测试,特别是在缓存刷新和加载场景下。
总结
JetCache作为一款高性能缓存框架,在实际应用中可能会遇到类加载和序列化相关问题。通过理解框架的工作原理和配置选项,开发者可以有效地解决这类问题。对于本例中的ClassNotFoundException,升级框架版本是最直接的解决方案,同时也建议开发者评估更适合自己项目的序列化方案。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00