PyKAN项目中随机种子固定后结果仍不一致的问题分析与解决方案
2025-05-14 08:14:41作者:伍霜盼Ellen
在机器学习项目中,可重复性是一个非常重要的特性。然而,在使用PyKAN项目进行实验时,即使设置了所有随机种子,不同运行之间仍然会出现结果不一致的情况。本文将深入分析这一问题的根源,并提供有效的解决方案。
问题现象
当用户在PyKAN项目中运行hellokan.ipynb示例时,虽然已经设置了所有随机种子(包括数据集创建和KAN初始化阶段),但在不同运行中,auto_symbolic函数的输出结果仍然不一致。这种现象在Jupyter Notebook环境中尤为明显。
根本原因分析
经过深入调查,发现导致这一问题的原因主要有三个:
-
浮点精度问题:PyKAN默认使用float32浮点精度,这种精度在多次运算中容易积累微小的数值差异,最终导致结果不一致。
-
优化算法选择:项目默认使用的LBFGS优化器内部存在一些难以控制的随机性因素,特别是在并行计算时。
-
运行环境差异:Jupyter Notebook环境本身会缓存一些中间状态,即使重启内核,某些底层状态也可能无法完全重置。
解决方案
针对上述问题根源,我们提出以下解决方案:
1. 提高浮点运算精度
将默认的float32精度提升为float64可以有效减少运算过程中的精度损失:
import torch
torch.set_default_dtype(torch.float64)
注意:同时需要修改KANLayer.py中的相关代码以避免类型错误。
2. 更换优化算法
将LBFGS优化器替换为Adam优化器:
# 在模型训练参数中指定优化器
train_params = {
'optimizer': 'adam',
'lr': 0.001,
# 其他参数...
}
需要注意的是,Adam优化器通常需要更长的训练时间才能达到与LBFGS相当的效果。
3. 使用脚本而非Notebook环境
建议将实验代码迁移到.py脚本中执行,这可以避免Jupyter Notebook环境带来的潜在问题:
python your_script.py
最佳实践建议
为了在PyKAN项目中获得可重复的结果,建议遵循以下实践:
- 在代码开头统一设置所有可能的随机种子
- 明确指定浮点精度和优化器类型
- 在相对干净的环境中运行实验(如新创建的虚拟环境)
- 对于关键实验,记录完整的运行环境和参数配置
通过以上措施,可以显著提高PyKAN项目实验的可重复性,为科研和工程应用提供更可靠的结果。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C045
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0122
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
699
162
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
696
374
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
675
Ascend Extension for PyTorch
Python
243
281
React Native鸿蒙化仓库
JavaScript
271
328