图遍历算法详解:从基础到应用
2025-06-06 00:06:45作者:齐冠琰
图遍历算法是计算机科学中处理图数据结构的基础技术,广泛应用于社交网络分析、路径规划、网络拓扑等领域。本文将深入讲解两种核心图遍历算法:广度优先搜索(BFS)和深度优先搜索(DFS),帮助读者全面理解其原理、实现和应用场景。
图遍历基础概念
图遍历是指按照特定规则访问图中所有顶点的过程。根据访问顺序的不同,主要分为两种策略:
- 广度优先搜索(BFS):逐层扩展,先访问离起点最近的顶点
- 深度优先搜索(DFS):沿着一条路径深入探索,直到无法继续再回溯
广度优先搜索(BFS)详解
算法原理
BFS采用"先近后远"的访问策略,类似于水波扩散的效果。算法从起点开始,先访问所有直接相邻的顶点,然后再访问这些相邻顶点的相邻顶点,依此类推。
算法步骤
- 初始化队列,将起点加入队列并标记为已访问
- 从队列头部取出一个顶点
- 访问该顶点的所有未访问邻居,将它们加入队列尾部并标记
- 重复步骤2-3直到队列为空
Python实现示例
from collections import deque
def bfs(graph, start):
visited = set([start]) # 记录已访问顶点
queue = deque([start]) # 使用双端队列实现队列
result = [] # 存储访问顺序
while queue:
vertex = queue.popleft() # 取出队列头部顶点
result.append(vertex)
# 遍历当前顶点的所有邻居
for neighbor in graph[vertex]:
if neighbor not in visited:
visited.add(neighbor)
queue.append(neighbor)
return result
关键特性
- 数据结构:使用队列(FIFO)管理待访问顶点
- 空间复杂度:最坏情况下需要存储所有顶点,O(V)
- 最优性:在无权图中能找到最短路径
- 应用场景:社交网络中的"二度人脉"查找、最短路径计算等
深度优先搜索(DFS)详解
算法原理
DFS采用"一条路走到底"的策略,尽可能深入地探索图的分支,直到无法继续前进才回溯。
算法步骤
- 从起点开始,标记为已访问
- 选择一个未访问的邻居顶点递归访问
- 当没有未访问邻居时,回溯到上一顶点
- 重复上述过程直到所有顶点被访问
Python实现示例
# 递归实现
def dfs_recursive(graph, vertex, visited=None, result=None):
if visited is None:
visited = set()
if result is None:
result = []
visited.add(vertex)
result.append(vertex)
for neighbor in graph[vertex]:
if neighbor not in visited:
dfs_recursive(graph, neighbor, visited, result)
return result
# 迭代实现
def dfs_iterative(graph, start):
visited = set()
stack = [start] # 使用栈管理待访问顶点
result = []
while stack:
vertex = stack.pop()
if vertex not in visited:
visited.add(vertex)
result.append(vertex)
# 将邻居逆序压栈以保证访问顺序与递归一致
for neighbor in reversed(graph[vertex]):
if neighbor not in visited:
stack.append(neighbor)
return result
关键特性
- 数据结构:使用栈(LIFO)或递归实现
- 空间复杂度:取决于递归深度,最坏O(V)
- 应用场景:拓扑排序、环路检测、迷宫求解等
BFS与DFS对比分析
| 对比维度 | BFS | DFS |
|---|---|---|
| 数据结构 | 队列 | 栈/递归 |
| 空间占用 | 较高(存储所有同层节点) | 较低(仅存储当前路径) |
| 路径性质 | 找到最短路径 | 可能找到更长路径 |
| 适用场景 | 最短路径、层级遍历 | 拓扑排序、连通性分析 |
| 实现难度 | 相对简单 | 递归实现需注意栈溢出 |
实际应用场景
BFS典型应用
- 社交网络分析:查找特定距离内的所有联系人
- 网络爬虫:按网站层级逐步抓取页面
- 最短路径规划:GPS导航中的路线计算
- 图像处理:区域填充算法
DFS典型应用
- 依赖关系解析:软件包安装顺序规划
- 游戏AI:迷宫求解、棋盘类游戏策略
- 编译器设计:语法分析树遍历
- 文件系统:目录结构遍历
性能优化与注意事项
- 稠密图处理:对于边数接近完全图的场景,DFS通常更节省空间
- 环路检测:DFS通过记录访问路径可有效检测环路
- 大规模图处理:考虑使用迭代而非递归实现DFS避免栈溢出
- 双向BFS:当起点和终点都已知时,可显著提高搜索效率
复杂度分析
两种算法在最坏情况下都需要访问所有顶点和边:
- 时间复杂度:O(V + E)
- 空间复杂度:
- BFS:O(V)
- DFS:O(h),h为最大递归深度
理解这些基础图遍历算法是掌握更复杂图算法(如Dijkstra、A*等)的前提。建议读者通过实际编码练习加深理解,尝试解决如迷宫生成、社交网络分析等实际问题。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
305
2.68 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
136
163
React Native鸿蒙化仓库
JavaScript
233
309
暂无简介
Dart
596
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
630
227
仓颉编译器源码及 cjdb 调试工具。
C++
123
642
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
614
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
195
71
仓颉编程语言测试用例。
Cangjie
36
642