PyKEEN项目中PosixPath导致的UnpicklingError问题解析
在PyKEEN 1.11.0版本中,用户在使用缓存数据集时可能会遇到一个由PosixPath引起的UnpicklingError问题。这个问题主要出现在PyTorch 2.6及以上版本的环境中,当尝试加载已缓存的数据集时。
问题背景
PyTorch 2.6版本引入了一个重要的安全变更:默认将torch.load()函数的weights_only参数从False改为True。这一变更旨在提高模型加载的安全性,防止潜在的恶意代码执行。然而,这也带来了一些兼容性问题,特别是当保存的数据中包含非基本Python类型时。
在PyKEEN项目中,数据集缓存机制使用了PyTorch的序列化功能来保存和加载数据。当缓存中包含pathlib.PosixPath对象时,由于weights_only=True的限制,会导致加载失败并抛出UnpicklingError。
问题表现
用户首次使用get_dataset()函数加载数据集(如"Nations"数据集)时能够正常工作,因为此时数据集尚未缓存。但当第二次尝试加载同一数据集时,系统会尝试从缓存读取,此时就会触发错误。
错误信息明确指出:pathlib.PosixPath不是一个被默认允许的全局变量,建议使用torch.serialization.add_safe_globals()或相应的上下文管理器来允许这个类型。
解决方案
PyKEEN团队在1.11.1版本中修复了这个问题,解决方案是显式地将weights_only参数设置为False。这种做法虽然解决了兼容性问题,但用户需要注意只加载可信来源的数据,因为weights_only=False可能会带来潜在的安全风险。
技术建议
从更长远的角度来看,项目团队正在考虑将元数据字典限制为JSON兼容的格式,而不是允许任意的Python字典。这种改变有几个优势:
- 安全性更高:JSON格式天然避免了任意代码执行的风险
- 可读性更好:JSON文件可以直接用文本编辑器查看和编辑
- 兼容性更强:JSON是跨平台和跨语言的标准格式
对于开发者而言,这是一个值得注意的案例,展示了当依赖的核心库(如PyTorch)引入重大安全变更时,如何平衡兼容性和安全性。同时也提醒我们在设计数据持久化方案时,应该优先考虑使用标准化、安全的格式。
总结
PyKEEN 1.11.1版本已经解决了这个PosixPath导致的UnpicklingError问题。用户只需升级到最新版本即可正常使用数据集缓存功能。同时,这个案例也为其他Python项目在处理类似问题时提供了有价值的参考。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00