Darts时间序列预测中的逆变换与窗口特征处理技术解析
2025-05-27 01:45:35作者:裴锟轩Denise
引言
在时间序列预测领域,数据预处理和特征工程是构建高性能模型的关键环节。本文将以Python时间序列分析库Darts为例,深入探讨两个重要技术点:预测评估中的逆变换处理,以及基于窗口变换的特征工程方法。
预测评估中的逆变换处理
在实际应用中,我们经常需要对时间序列数据进行变换以满足模型假设或提高预测精度。常见的变换包括对数变换(log1p)等。然而,在评估预测性能时,我们需要将预测值转换回原始尺度才能进行有意义的比较。
Darts的backtest方法不会自动执行逆变换操作。这是因为该方法无法知晓用户对输入序列应用了何种变换。正确的处理流程应该是:
- 首先对原始数据应用变换
- 使用变换后的数据进行历史预测
- 对预测结果应用逆变换
- 最后在原始尺度上评估预测性能
Darts提供了两种实现方式:
手动处理方式
# 应用变换
transformed_series = series.map(np.log1p)
# 生成历史预测
hfcs = model.historical_forecasts(
series=transformed_series,
last_points_only=False
)
# 应用逆变换
hfcs = [hfc.map(np.expm1) for hfc in hfcs]
# 在原始尺度上评估
bt = model.backtest(
series=series, # 原始数据
historical_forecasts=hfcs,
last_points_only=False
)
使用Darts的数据转换器
Darts提供了更优雅的Scaler转换器,可以封装变换和逆变换逻辑:
from sklearn.preprocessing import FunctionTransformer
from darts.dataprocessing.transformers import Scaler
# 创建转换器
trafo = FunctionTransformer(np.log1p, inverse_func=np.expm1, validate=True, check_inverse=True)
sc = Scaler(scaler=trafo)
# 应用变换
series_tr = sc.fit_transform(series)
# 应用逆变换
series_inv_tr = sc.inverse_transform(series_tr)
窗口变换特征工程
窗口变换是时间序列特征工程中的重要技术,可以提取序列的统计特征作为模型输入。Darts提供了window_transform方法来实现这一功能。
滚动均值特征示例
# 计算6期滚动均值作为特征
past_covariates = series.window_transform(
transforms={
"function": "mean",
"mode": "rolling",
"window": 6,
},
)
结合预测模型使用
将窗口变换特征作为过去协变量输入模型:
rolling_lag = 12
output_chunk_length = 12
model = LinearRegressionModel(
lags=6, # 使用目标序列的最近6期
lags_past_covariates=[-rolling_lag], # 使用12期前的滚动均值特征
output_chunk_length=output_chunk_length,
)
model.fit(
series=train,
past_covariates=past_covariates
)
预测时的注意事项
需要注意的是,当预测长度超过模型的output_chunk_length时,Darts当前版本不会自动更新窗口特征。此时需要手动实现预测循环:
- 预测output_chunk_length个点
- 将预测值追加到输入序列末尾
- 基于扩展后的序列重新计算窗口特征
- 使用新序列和新特征进行下一轮预测
- 重复直到预测足够长的序列
总结
本文详细介绍了Darts库中两个关键技术点:预测评估中的逆变换处理和窗口变换特征工程。正确理解这些技术细节对于构建可靠的时间序列预测系统至关重要。特别是:
- 评估预测性能时,必须确保预测值和真实值在同一尺度上比较
- 窗口变换可以提取有价值的时序特征,但在多步预测时需要特别注意特征的更新机制
随着Darts库的持续发展,这些功能有望变得更加自动化和用户友好,但理解底层原理将帮助数据科学家更灵活地应对各种预测场景。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.88 K
暂无简介
Dart
671
155
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
React Native鸿蒙化仓库
JavaScript
260
322
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
310
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
653
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1