Darts时间序列预测中的逆变换与窗口特征处理技术解析
2025-05-27 20:46:27作者:裴锟轩Denise
引言
在时间序列预测领域,数据预处理和特征工程是构建高性能模型的关键环节。本文将以Python时间序列分析库Darts为例,深入探讨两个重要技术点:预测评估中的逆变换处理,以及基于窗口变换的特征工程方法。
预测评估中的逆变换处理
在实际应用中,我们经常需要对时间序列数据进行变换以满足模型假设或提高预测精度。常见的变换包括对数变换(log1p)等。然而,在评估预测性能时,我们需要将预测值转换回原始尺度才能进行有意义的比较。
Darts的backtest方法不会自动执行逆变换操作。这是因为该方法无法知晓用户对输入序列应用了何种变换。正确的处理流程应该是:
- 首先对原始数据应用变换
- 使用变换后的数据进行历史预测
- 对预测结果应用逆变换
- 最后在原始尺度上评估预测性能
Darts提供了两种实现方式:
手动处理方式
# 应用变换
transformed_series = series.map(np.log1p)
# 生成历史预测
hfcs = model.historical_forecasts(
series=transformed_series,
last_points_only=False
)
# 应用逆变换
hfcs = [hfc.map(np.expm1) for hfc in hfcs]
# 在原始尺度上评估
bt = model.backtest(
series=series, # 原始数据
historical_forecasts=hfcs,
last_points_only=False
)
使用Darts的数据转换器
Darts提供了更优雅的Scaler转换器,可以封装变换和逆变换逻辑:
from sklearn.preprocessing import FunctionTransformer
from darts.dataprocessing.transformers import Scaler
# 创建转换器
trafo = FunctionTransformer(np.log1p, inverse_func=np.expm1, validate=True, check_inverse=True)
sc = Scaler(scaler=trafo)
# 应用变换
series_tr = sc.fit_transform(series)
# 应用逆变换
series_inv_tr = sc.inverse_transform(series_tr)
窗口变换特征工程
窗口变换是时间序列特征工程中的重要技术,可以提取序列的统计特征作为模型输入。Darts提供了window_transform方法来实现这一功能。
滚动均值特征示例
# 计算6期滚动均值作为特征
past_covariates = series.window_transform(
transforms={
"function": "mean",
"mode": "rolling",
"window": 6,
},
)
结合预测模型使用
将窗口变换特征作为过去协变量输入模型:
rolling_lag = 12
output_chunk_length = 12
model = LinearRegressionModel(
lags=6, # 使用目标序列的最近6期
lags_past_covariates=[-rolling_lag], # 使用12期前的滚动均值特征
output_chunk_length=output_chunk_length,
)
model.fit(
series=train,
past_covariates=past_covariates
)
预测时的注意事项
需要注意的是,当预测长度超过模型的output_chunk_length时,Darts当前版本不会自动更新窗口特征。此时需要手动实现预测循环:
- 预测output_chunk_length个点
- 将预测值追加到输入序列末尾
- 基于扩展后的序列重新计算窗口特征
- 使用新序列和新特征进行下一轮预测
- 重复直到预测足够长的序列
总结
本文详细介绍了Darts库中两个关键技术点:预测评估中的逆变换处理和窗口变换特征工程。正确理解这些技术细节对于构建可靠的时间序列预测系统至关重要。特别是:
- 评估预测性能时,必须确保预测值和真实值在同一尺度上比较
- 窗口变换可以提取有价值的时序特征,但在多步预测时需要特别注意特征的更新机制
随着Darts库的持续发展,这些功能有望变得更加自动化和用户友好,但理解底层原理将帮助数据科学家更灵活地应对各种预测场景。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
173
193
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
269
93
暂无简介
Dart
622
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
377
3.32 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
620
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1