RecBole项目中FEARec模型的配置与训练实践
2025-06-19 19:24:21作者:何将鹤
模型概述
FEARec是RecBole推荐系统框架中一个基于频域增强的序列推荐模型。该模型创新性地结合了时域和频域特征,通过傅里叶变换在频域中捕捉用户行为序列的长期模式,同时在时域中保持对短期偏好的建模能力。这种双域融合的设计使FEARec在序列推荐任务中表现出色。
关键配置参数解析
序列长度(seq_len)的选择
seq_len参数决定了模型处理用户行为序列的最大长度,这是FEARec模型的核心配置之一。在实际应用中,建议通过以下步骤确定最佳值:
- 数据分析阶段:统计数据集中用户行为序列长度的分布情况,计算平均长度和分位数
- 性能权衡:过小的seq_len会截断长序列导致信息丢失,过大会增加计算资源消耗
- 经验取值:一般可设置为覆盖80-90%用户行为序列的长度,同时考虑GPU内存限制
典型场景中,seq_len的取值范围通常在50-200之间。对于电商推荐场景,50-100可能足够;而对于视频观看记录等长序列场景,可能需要设置到150-200。
自定义数据训练实践
数据准备
要使用自定义数据集训练FEARec模型,需要遵循RecBole的数据格式规范:
-
创建包含以下必要字段的交互文件:
- user_id:用户唯一标识
- item_id:物品唯一标识
- timestamp:交互时间戳(可选但推荐)
-
建议的文件结构:
custom_dataset/
├── custom.inter
└── custom.item
训练流程优化
针对训练不终止的问题,可以从以下几个方面进行排查和优化:
- 检查数据完整性:确保数据集中没有异常值或缺失值
- 调整训练参数:
- 适当减小batch_size
- 设置合理的early_stop参数
- 监控训练过程中的指标变化
- 验证集配置:确保验证集划分合理,避免数据泄露
配置文件示例
以下是FEARec模型的核心配置示例:
field_separator: "\t"
seq_len: 100
embedding_size: 64
train_batch_size: 256
eval_batch_size: 512
loss_type: "CE"
高级调优技巧
-
频域参数调节:
- 调整傅里叶变换的系数保留比例
- 实验不同的频域滤波策略
-
混合域融合:
- 尝试不同的时频域特征融合方式
- 调整时域和频域特征的权重比例
-
正则化策略:
- 在频域操作后加入适当的归一化层
- 使用dropout防止过拟合
常见问题解决方案
- 显存不足:减小batch_size或seq_len,使用梯度累积
- 收敛缓慢:检查学习率设置,尝试warmup策略
- 过拟合:增加正则化项,使用更强大的数据增强
通过合理配置和调优,FEARec模型能够在各种序列推荐场景中展现出优异的性能。实践表明,该模型特别适合具有明显周期性模式的用户行为数据。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
531
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355