RecBole项目中FEARec模型的配置与训练实践
2025-06-19 19:24:21作者:何将鹤
模型概述
FEARec是RecBole推荐系统框架中一个基于频域增强的序列推荐模型。该模型创新性地结合了时域和频域特征,通过傅里叶变换在频域中捕捉用户行为序列的长期模式,同时在时域中保持对短期偏好的建模能力。这种双域融合的设计使FEARec在序列推荐任务中表现出色。
关键配置参数解析
序列长度(seq_len)的选择
seq_len参数决定了模型处理用户行为序列的最大长度,这是FEARec模型的核心配置之一。在实际应用中,建议通过以下步骤确定最佳值:
- 数据分析阶段:统计数据集中用户行为序列长度的分布情况,计算平均长度和分位数
- 性能权衡:过小的seq_len会截断长序列导致信息丢失,过大会增加计算资源消耗
- 经验取值:一般可设置为覆盖80-90%用户行为序列的长度,同时考虑GPU内存限制
典型场景中,seq_len的取值范围通常在50-200之间。对于电商推荐场景,50-100可能足够;而对于视频观看记录等长序列场景,可能需要设置到150-200。
自定义数据训练实践
数据准备
要使用自定义数据集训练FEARec模型,需要遵循RecBole的数据格式规范:
-
创建包含以下必要字段的交互文件:
- user_id:用户唯一标识
- item_id:物品唯一标识
- timestamp:交互时间戳(可选但推荐)
-
建议的文件结构:
custom_dataset/
├── custom.inter
└── custom.item
训练流程优化
针对训练不终止的问题,可以从以下几个方面进行排查和优化:
- 检查数据完整性:确保数据集中没有异常值或缺失值
- 调整训练参数:
- 适当减小batch_size
- 设置合理的early_stop参数
- 监控训练过程中的指标变化
- 验证集配置:确保验证集划分合理,避免数据泄露
配置文件示例
以下是FEARec模型的核心配置示例:
field_separator: "\t"
seq_len: 100
embedding_size: 64
train_batch_size: 256
eval_batch_size: 512
loss_type: "CE"
高级调优技巧
-
频域参数调节:
- 调整傅里叶变换的系数保留比例
- 实验不同的频域滤波策略
-
混合域融合:
- 尝试不同的时频域特征融合方式
- 调整时域和频域特征的权重比例
-
正则化策略:
- 在频域操作后加入适当的归一化层
- 使用dropout防止过拟合
常见问题解决方案
- 显存不足:减小batch_size或seq_len,使用梯度累积
- 收敛缓慢:检查学习率设置,尝试warmup策略
- 过拟合:增加正则化项,使用更强大的数据增强
通过合理配置和调优,FEARec模型能够在各种序列推荐场景中展现出优异的性能。实践表明,该模型特别适合具有明显周期性模式的用户行为数据。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
537
3.75 K
暂无简介
Dart
773
191
Ascend Extension for PyTorch
Python
343
406
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
755
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
1.07 K
97
React Native鸿蒙化仓库
JavaScript
303
355
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
180
AscendNPU-IR
C++
86
141
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
248