RecBole项目中FEARec模型的配置与训练实践
2025-06-19 19:24:21作者:何将鹤
模型概述
FEARec是RecBole推荐系统框架中一个基于频域增强的序列推荐模型。该模型创新性地结合了时域和频域特征,通过傅里叶变换在频域中捕捉用户行为序列的长期模式,同时在时域中保持对短期偏好的建模能力。这种双域融合的设计使FEARec在序列推荐任务中表现出色。
关键配置参数解析
序列长度(seq_len)的选择
seq_len参数决定了模型处理用户行为序列的最大长度,这是FEARec模型的核心配置之一。在实际应用中,建议通过以下步骤确定最佳值:
- 数据分析阶段:统计数据集中用户行为序列长度的分布情况,计算平均长度和分位数
- 性能权衡:过小的seq_len会截断长序列导致信息丢失,过大会增加计算资源消耗
- 经验取值:一般可设置为覆盖80-90%用户行为序列的长度,同时考虑GPU内存限制
典型场景中,seq_len的取值范围通常在50-200之间。对于电商推荐场景,50-100可能足够;而对于视频观看记录等长序列场景,可能需要设置到150-200。
自定义数据训练实践
数据准备
要使用自定义数据集训练FEARec模型,需要遵循RecBole的数据格式规范:
-
创建包含以下必要字段的交互文件:
- user_id:用户唯一标识
- item_id:物品唯一标识
- timestamp:交互时间戳(可选但推荐)
-
建议的文件结构:
custom_dataset/
├── custom.inter
└── custom.item
训练流程优化
针对训练不终止的问题,可以从以下几个方面进行排查和优化:
- 检查数据完整性:确保数据集中没有异常值或缺失值
- 调整训练参数:
- 适当减小batch_size
- 设置合理的early_stop参数
- 监控训练过程中的指标变化
- 验证集配置:确保验证集划分合理,避免数据泄露
配置文件示例
以下是FEARec模型的核心配置示例:
field_separator: "\t"
seq_len: 100
embedding_size: 64
train_batch_size: 256
eval_batch_size: 512
loss_type: "CE"
高级调优技巧
-
频域参数调节:
- 调整傅里叶变换的系数保留比例
- 实验不同的频域滤波策略
-
混合域融合:
- 尝试不同的时频域特征融合方式
- 调整时域和频域特征的权重比例
-
正则化策略:
- 在频域操作后加入适当的归一化层
- 使用dropout防止过拟合
常见问题解决方案
- 显存不足:减小batch_size或seq_len,使用梯度累积
- 收敛缓慢:检查学习率设置,尝试warmup策略
- 过拟合:增加正则化项,使用更强大的数据增强
通过合理配置和调优,FEARec模型能够在各种序列推荐场景中展现出优异的性能。实践表明,该模型特别适合具有明显周期性模式的用户行为数据。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
new-apiAI模型聚合管理中转分发系统,一个应用管理您的所有AI模型,支持将多种大模型转为统一格式调用,支持OpenAI、Claude、Gemini等格式,可供个人或者企业内部管理与分发渠道使用。🍥 A Unified AI Model Management & Distribution System. Aggregate all your LLMs into one app and access them via an OpenAI-compatible API, with native support for Claude (Messages) and Gemini formats.JavaScript01
idea-claude-code-gui一个功能强大的 IntelliJ IDEA 插件,为开发者提供 Claude Code 和 OpenAI Codex 双 AI 工具的可视化操作界面,让 AI 辅助编程变得更加高效和直观。Java01
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility.Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
519
3.69 K
暂无简介
Dart
760
182
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
569
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
160
方舟分析器:面向ArkTS语言的静态程序分析框架
TypeScript
169
53
Ascend Extension for PyTorch
Python
321
373
React Native鸿蒙化仓库
JavaScript
301
347