CodeFormer老照片修复终极指南:5分钟快速上手完整教程
想要让那些泛黄模糊的老照片重现光彩吗?CodeFormer作为一款基于NeurIPS 2022最新研究成果的AI老照片修复工具,能够轻松实现老照片修复、人脸恢复和颜色增强。无论你是摄影爱好者还是普通用户,这个完整指南都能帮助你在5分钟内快速上手,让珍贵的家庭照片焕发新生!🚀
✨ CodeFormer的核心功能亮点
CodeFormer采用了创新的代码本查找变换器技术,能够实现多种强大的老照片修复功能:
🎯 人脸修复与恢复
通过先进的人脸检测和修复算法,CodeFormer能够智能识别并修复模糊、破损的人脸照片,恢复清晰的五官细节和自然肤色。
模糊老照片经过CodeFormer修复后,面部细节和眼镜清晰度大幅提升
🌈 黑白照片颜色增强
将黑白老照片自动转换为彩色版本,智能还原肤色、发色和衣物色彩,让历史瞬间焕发新生。
🎨 图像修复与填补
能够完美修复被遮挡或破损的面部区域,保持原始图像的完整性和一致性。
📥 快速安装步骤
环境准备与安装
首先克隆项目仓库并设置Python环境:
git clone https://gitcode.com/gh_mirrors/co/CodeFormer
cd CodeFormer
conda create -n codeformer python=3.8 -y
conda activate codeformer
pip3 install -r requirements.txt
python basicsr/setup.py develop
下载预训练模型
运行以下命令下载必要的人脸检测和修复模型:
python scripts/download_pretrained_models.py facelib
python scripts/download_pretrained_models.py CodeFormer
🚀 5分钟快速上手教程
步骤1:准备测试图片
将需要修复的老照片放入inputs/whole_imgs文件夹中,或者使用项目自带的示例图片进行测试。
步骤2:运行修复命令
根据你的需求选择不同的修复模式:
全图增强修复
python inference_codeformer.py -w 0.7 --input_path inputs/whole_imgs/
人脸颜色增强
python inference_colorization.py --input_path inputs/gray_faces/
步骤3:查看修复结果
修复后的图片会自动保存到results文件夹中,你可以对比查看修复前后的惊人变化。
🎯 实用技巧与参数优化
保真度权重调节
CodeFormer提供了-w参数来调节修复效果:
- w=0.5:更高质量的输出,适合艺术修复
- w=0.7:平衡质量与保真度
- w=1.0:最高保真度,保持原始特征
视频增强功能
除了图片修复,CodeFormer还支持视频增强:
python inference_codeformer.py --bg_upsampler realesrgan --face_upsample -w 1.0 --input_path [视频路径]
📊 实际应用场景
CodeFormer老照片修复技术适用于多种场景:
- 家庭相册修复:修复祖辈的珍贵照片
- 历史档案数字化:为博物馆和档案馆提供技术支持
- 影视制作:修复老电影中的人脸画面
- 个人收藏:让个人摄影作品重现光彩
💡 常见问题解答
Q: 修复效果不满意怎么办?
A: 尝试调整-w参数,或者使用--face_upsample参数进一步优化。
Q: 支持批量处理吗?
A: 是的,只需将多个图片放入文件夹,CodeFormer会自动批量处理。
🔮 未来发展与社区支持
CodeFormer作为开源项目,拥有活跃的社区支持和持续的技术更新。项目核心代码位于basicsr/archs/codeformer_arch.py,包含了完整的Transformer架构实现。
通过这个完整指南,你已经掌握了使用CodeFormer进行老照片修复的所有关键步骤。无论你是技术新手还是有经验的用户,都能在5分钟内开始修复那些珍贵的回忆!📸
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00




