Requests库中Decimal类型JSON序列化问题解析
2025-04-30 09:23:29作者:范靓好Udolf
问题背景
在使用Python的Requests库发送HTTP请求时,开发人员经常需要将包含Decimal类型数据的字典转换为JSON格式进行传输。然而,当系统中没有安装simplejson库时,Requests使用Python标准库的json模块进行序列化,这会导致Decimal类型无法被正确序列化的问题。
问题现象
当尝试发送包含Decimal类型数据的请求时,如果没有安装simplejson库,会抛出TypeError: Object of type Decimal is not JSON serializable异常。而安装simplejson后,相同的代码却能正常工作。
技术原理
Python标准库的json模块默认不支持Decimal类型的序列化,因为它不是JSON规范中的原生数据类型。而simplejson作为第三方库,提供了对Decimal类型的支持,能够自动将其转换为JSON兼容的浮点数或字符串格式。
Requests库在内部会优先尝试使用simplejson(如果已安装),回退到标准库的json模块。这种设计导致了不同环境下行为不一致的问题。
解决方案
方案一:安装simplejson
最简单的解决方案是安装simplejson库:
pip install simplejson
方案二:自定义JSON编码器
如果不希望依赖simplejson,可以自定义JSON编码器:
import json
from decimal import Decimal
import requests
class DecimalEncoder(json.JSONEncoder):
def default(self, obj):
if isinstance(obj, Decimal):
return float(obj)
return super().default(obj)
data = {'key': Decimal('0.0')}
json_data = json.dumps(data, cls=DecimalEncoder)
response = requests.post(url, data=json_data, headers={'Content-Type': 'application/json'})
方案三:预先转换数据类型
在构建请求数据时,手动将Decimal转换为float或str:
data = {'key': float(Decimal('0.0'))}
response = requests.post(url, json=data)
最佳实践
- 如果项目需要处理大量Decimal类型数据,建议安装simplejson以获得更好的兼容性和性能
- 在共享代码时,应该明确声明对simplejson的依赖,或者在代码中处理类型转换
- 对于金融等对精度要求高的应用,建议将Decimal转换为字符串传输,避免浮点数精度损失
总结
Requests库的JSON序列化行为差异源于其对不同JSON处理库的适配策略。理解这一机制有助于开发人员更好地处理特殊数据类型,构建更健壮的HTTP请求逻辑。根据项目需求选择合适的解决方案,可以避免这类兼容性问题。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.72 K
Ascend Extension for PyTorch
Python
328
387
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
136